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ABSTRACT. Cross-pollination and gametophytic self-
incompatibility reduce the stability of Coffea canephora genotypes. 
This is an important crop for Brazil, the largest producer of this type 

of coffee and also a major exporter. The study of biometric 
characteristics is essential to assist in the selection of promising plant 
materials. We examined the diversity of morpho-agronomic traits of 

genotypes of C. canephora cv. Conilon through the evaluation of 
branch and leaf parameters. Assessments included plagiotropic 
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branch length, number of nodes in plagiotropic branches, distance 
between nodes in plagiotropic branches, orthotropic branch length, 
number of nodes in orthotropic branch, distance between nodes in 

orthotropic branch, plant height, canopy diameter, leaf length, leaf 
width, and leaf area in two periods. The data from the 43 coffee 
genotypes were tested by multivariate and cluster analyses. Six 

groups were formed by the Tocher optimization method, and five 
groups by the unweighted pair group method with arithmetic mean 
(UPGMA) hierarchical method, suggesting an important genetic 

variability among plant materials. Both Tocher optimization and 
UPGMA hierarchical methods were consistent for clustering the 

genotypes, ordering them in six and five dissimilar groups, 
respectively, with genotypes 25 and 37 standing out with the greatest 
dissimilarity, constituting isolated groups by both methods. Pearson’s 

correlation ranged from very weak to very strong, positive and 
negative, among the characteristics, as also shown by principal 
component analyses. These analyses indicated the morpho-agronomic 

traits with a greater degree of correlation, assisting in the choice of 
promising plant materials. The genetic parameters estimates 

demonstrate genetic variability and thus breeding potential within the 
Conilon coffee genotypes studied. These results emphasize the 
usefulness of biometric evaluations as a tool for the identification and 

breeding of genotypes to compose new Conilon coffee cultivars. 
 
Key words: Biometrics; Clustering; Conilon coffee; Multivariate analysis; 

Breeding 

INTRODUCTION 
 
Coffee is one of the most valuable and traded agronomic commodities worldwide 

and included in the main stock exchanges, such as London and New York. It is a highly 
labor-intensive crop, based on the species Coffea arabica and C. canephora. Coffee is 
grown in more than 80 tropical countries, being responsible for the livelihoods of about 25 

million farmers, mainly smallholders, and about 100 million people are estimated to be 
involved in this crop production chain (Martins et al., 2017; Ramalho et al., 2018). Brazil 

stands out as the world’s largest coffee producer, where both Arabica (Coffea arabica, ca. 
65%) and Robusta (Coffea canephora, ca. 35%) are grown (CONAB, 2020). 

Breeding strategies have substantially contributed to the development of new coffee 

genotypes, resulting in noticeable advances achieved in coffee fields during recent decades 
(Dalcomo et al., 2015; Lima et al., 2016; Rodrigues et al., 2017; Partelli et al., 2019, 2020). 
However, there is always a need for new cultivars with desirable agronomic characteristics 

and a suitable performance in different environments. Productive cultivars adapted to 
various farming systems are among the principal components of both the competitiveness 

and the sustainability of coffee fields (Carvalho et al., 2016). 
Data from morphological and biometric characteristics are very useful for the 

breeding process of coffee trees (Freitas et al., 2007; Carvalho et al., 2010; Nogueira et al., 
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2012; Rodrigues et al., 2013; Rodrigues et al., 2014; Moura et al., 2016; Rodrigues et al.; 
2016;  Giles et al. 2019, Vieira et al., 2019). Among these morphological traits, plant height, 
plagiotropic branch length, number of nodes, and vegetative vigor are considered to be 

strongly related to the crop yield (Carvalho et al., 2010; Teixeira et al., 2012; Assis et al., 
2014; Pereira et al., 2016). Additionally, leaf characteristics should be considered in the 
breeding processes (Dubberstein et al., 2019; Martins et al., 2019a), as they are important in 

for plant growth and development assessments, including physiological parameters, such as 
transpiration and net assimilation rates (Fascella et al., 2013; Schmidt et al., 2014). Such 
assessments may provide early information related to posterior crop performance (Brinate et 

al., 2015). 
Coffea canephora is an allogamous and diploid species, with gametophytic self-

incompatibility (Conagin and Mendes, 1961; Tran et al., 2017; Moraes et al., 2018). 
Therefore, natural reproduction, as well as propagation by seeds, results in a highly diverse 
population, wherein each plant may differ from others in relation to its architecture, shape 

and size of both grain and leaves, maturation pattern, and susceptibility or tolerance to 
biotic and abiotic environmental stresses, among others. Therefore, there is a need for 
coffee breeding programs to identify homogeneous and stable traits for commercial coffee 

fields. Conventional breeding methods require up to 30 years to obtain a new coffee cultivar 
with genetically stable agronomic characteristics and commercial interest. On the other 

hand, the clonal propagation method requires only about one third of this time, allowing 
hybrid vigor exploration and the multiplication of outstanding genotypes with the 
characteristics of interest still in segregation, which could hardly be naturally find in a 

cultivar propagated by seeds (Carvalho et al., 2011). Clone plants are identical to their 
parent plant, assuring homogeneity in their development, as well as higher crop yield, and 
better coffee bean quality than plants propagated by seeds, allowing one to breed crop 

cultivars with a distinct maturation cycle duration (Bragança et al., 2001; Carvalho et al., 
2011; Covre et al., 2013; Partelli et al., 2014; Ramalho et al., 2016, Martins et al., 2019; 
Partelli et al. 2019, 2020). After numerous assessments, including genetic compatibility 

tests, selected clones are grouped to form a new clonal cultivar according to specific 
objectives, and thereafter maintained in an Germplasm Active Bank and other breeding 

programs. 
Several predictive methods can be used to study genetic divergence, including 1) 

multivariate analysis, where means of dissimilarity are calculated from the Euclidean 

distance and the generalized Mahalanobis distance (D
2
); 2) clustering methods involving 

hierarchical methods, such as the unweighted pair group method with arithmetic mean 
(UPGMA) and the Tocher optimization method; and 3) dispersion techniques involving 

principal components analysis and canonical variables (Cruz et al., 2012). 
In this context, this study aimed to evaluate the genetic diversity through 

morphological and biometric characteristics of leaves and branches of 43 genotypes of C. 
canephora cv. Conilon, which is the most widely plant cultivar grown in Brazil for Robusta 
type of coffee. 

MATERIAL AND METHODS 

Plant material and experimental design 
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The assessments were performed in a field with 43 genotypes of C. canephora cv. 
Conilon (Table 1), most of which were selected by regional coffee farmers due to yield and 
quality performance. Therefore, currently these are genotypes with importance on a regional 

scale but they with potential to grow in other coffee regions. Seedlings were transplanted in 
April 2014 in the municipality of Nova Venécia, northern Espírito Santo State, Brazil 
(18°39’43” S, 40°25’52” W; 199 m above sea level, and annual mean temperature of 23°C). 

The soil at the site is a Latossolo Vermelho-Amarelo, distrófico, with clayey texture and a 
wavy relief (Santos et al., 2018). The region has a tropical climate, characterized by warm 
and humid summers and dry winters, classified as Aw according to Köppen (Alvares et al., 

2013). 
 

 

Table 1. Identification of the 43 genotypes of Coffea canephora cv. Conilon in Nova Venécia, ES, Brazil. 

 

Identification Name Identification Name Identification Name 

01 Verdim R 16 Pirata 31 Cheique 

02 B01 17 Peneirão 32 P2 

03 Bicudo 18 Z39 33 Emcapa 02 

04 Alecrim 19 Z35 34 Emcapa 153 

05 700 20 Z40 35 P1 

06 CH1 21 Z29 36 LB1 

07 Imbigudinho 22 Z38 37 122 

08 AD1 23 Z18 38 Verdim D 

09 Graudão HP 24 Z37 39 - 

10 Valcir P 25 Z21 40 Emcapa 143 

11 Beira Rio 8 26 Z36 41 Ouro negro 1 

12 Tardio V 27 Ouro Negro 42 Ouro negro 2 

13 AP 28 18 43 ClementinoT 

14 L80 29 Tardio C - - 

15 Bamburral 30 A1 - - 

Genotype 33 belongs to cv. Emcapa 8111 and genotypes 34 and 39 to cv. Emcapa 8131 (Bragança et al., 2001). Genotypes 1, 11, 15, 16, 

30 and 43 belong to cv. Tributun (Partelli et al., 2020) and 30 and 35 to cv. Andina (Partelli et al., 2019). 

 
The genotypes were arranged in a randomized block design with three replicates 

and seven plants of each genotype per replicate. The seedlings were transplanted with a 

spacing of 3 m between coffee rows and 1 m between plants in each row, resulting in a 
density of 3,333 plants per hectare. All genotypes were propagated by cuttings, with the 

exception of genotype 39, propagated by seed. Coffee pruning was performed in order to 
maintain four orthotropic branches per plant. The entire experimental area was irrigated by 
a drip irrigation system. The treatments received 500, 100, and 400 kg.ha

-1
 year

-1
 of N, 

P2O5, and K2O, respectively, applied depending on plant requirements and phenological 
stages. Soil micronutrients were corrected by applying 2 kg.ha

-1
 year

-1
 Zn, 1.0 kg.ha

-1
 year

-1 

B, 2.0 kg.ha
-1

 year
-1 

Cu, and 10 kg.ha
-1

 year
-1 

Mn. 

Leaf and branch evaluations 
 

Leaf area was assessed from 20 leaves per genotype, sampled from the third and/or 
fourth newly developed pair of plagiotropic branches located in the plants’ middle third. 

Assessments were performed during period 1 (October 2016) and period 2 (February 2017). 
The leaves’ maximal length (LLT1 and LLT2) and maximum width (LWT1 and LWT2) 
were measured by using a graduated ruler (Partelli et al., 2006), and leaf area (LAT1 and 

LAT2) was measured using a leaf area meter (Model LI-3100, Li-Cor, Lincoln, NE, USA). 
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Plant biometric analyses included plant height (Hgt, measured from base to top, in 
cm); canopy diameter (Diam, measured from one end to the other, in cm); length of 
productive plagiotropic branch (PBL, measured from the insertion in the orthotropic branch 

to the plagiotropic branch apex, in cm); orthotropic branch length (OBL, measured from the 
insertion in the evaluated plagiotropic branch to the orthotropic branch apex, in cm); 
number of internodes per plagiotropic (NNP) and orthotropic (NNO) branches; and distance 

between nodes in the plagiotropic (DBP) and orthotropic branches (DBO). The productive 
plagiotropic branches (in the production stage) were located in the plant’s lower third. 

Initially, the degree of multi-collinearity for the mean X’X correlation matrix was 

evaluated (Montgomery and Peck, 1981). In order to identify the variables that contributed 
to the multi-collinearity emergence, eigenvalues and eigenvectors analyses were performed. 

The multi-collinearity is classified according to the condition number (CN) values as 
follows: weak (CN < 100), moderate (100 < CN < 1,000) or strong (CN > 1,000) (Teixeira 
et al., 2012). The CN value in this study was above acceptable, thus some variables were 

removed by means of principal components, eliminating the component with highest weight 
from the high vector of the smallest vector. By achieving a CN value below 100, further 
analyses were performed. 

A multivariate analysis (MANOVA) was performed from the variance components, 
in which the following parameters were estimated for each characteristic: coefficient of 

environmental variation (CVe); coefficient of genetic variation (CVg); variation index (VI), 
corresponding to the CVg and CVe ratio; and heritability (h²). Differences between mean 
values were compared by the Scott-Knott test at 5% probability. As a dissimilarity method, 

the generalized Mahalanobis distance matrix (D
2
) was used and genotype cluster analyses 

were performed using both the Tocher optimization method, and the hierarchical clustering 
method unweighted pair group method with arithmetic mean (UPGMA). Subsequently, the 

variables were subjected to Pearson’s correlation analysis. Principal components analysis in 
a dispersion plot of biplot type was also performed. Statistical analyses were carried out 
with the aid of the R software (R Core Team, 2018). 

RESULTS AND DISCUSSION 
 
The multi-collinearity test indicated that the first CN value was above acceptable, 

so it was necessary to remove some variables. First, we eliminated the length of plagiotropic 
branches, which resulted in a CN of 1,405. Then, leaf area at T1 was also removed, 
lowering the CN to 841.67. After removing the distance between the nodes in orthotropic 

branches, the CN reached 445, and with the removal of leaf area at T2, CN decreased to 71, 
an acceptable value. Therefore, the analysis of variance and clustering methods was 

performed only with the 10 remaining variables. 
Through the analysis of variance, we found a difference among the studied 

genotypes for all the characteristics evaluated at the 1% level of significance (Table 2), 

suggesting the occurrence of genetic variability among the population regarding the 
evaluated characteristics. This is a promising result, as such variability is a basic condition 
to obtain gains with genotype breeding (Rodrigues et al., 2012; Carias et al., 2016).  

Among the estimated genetic parameters, the coefficient of environmental variation 
(CVe) and coefficient of genetic variation (CVg) showed values ranging from 6.43 to 

11.09% and 7.75 to 12.37%, respectively, which can be considered low (˂10%) or moderate 
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(from 10 and 20%) according to Gomes (1985). From residual coefficient of environmental 
variation (CVe) estimative, it is possible to indicate a high experimental accuracy and 
precision for the characteristics being studied. The presence of genetic variability is 

confirmed and quantified through the coefficient of genetic variation, which expresses the 
intensity of genetic variation in relation to the character mean (Resende, 1991). On the other 
hand, coefficients of genetic variation (CVg) above 7% are considered high by Sebbenn et 

al. (1998). Thus, in this study, the CVg was low only for plant height, with a value of 
5.74%. The others characteristics were in accordance with the proposed classification and 
could be considered as useful criteria for genotype selection. 

 
 

Table 2. Summary of the analysis of variance for biometric and leaf-related characteristics, and their 

genetic and environmental parameters, of 43 genotypes of Coffea canephora cv. Conilon. 

 

Variables 
MS 

Mean 
CVe CVg 

VI 
h2 

Genotype Residue (%) (%) 

NNP 011.55** 002.94 015.45 11.09 07.75 0.69 74.54 

DBP 00.90** 000.086 003.80 07.74 09.71 1.25 90.41 

OBL 250.67** 044.45 071.63 09.31 08.18 0.87 82.22 

NNO 029.95** 003.84 019.85 09.87 10.50 1.06 87.16 

Hgt 534.41** 090.52 149.72 06.35 05.74 0.90 83.06 

Diam 1438.53** 258.98 162.14 09.92 08.65 0.87 82.09 

LLT1 028.08** 000.74 013.39 06.43 10.07 1.56 97.35 

LWT1 006.50** 000.18 005.32 08.16 12.18 1.49 97.06 

LLT2 023.68** 001.17 014.55 07.44 08.41 1.29 95.03 

LWT2 009.30** 000.31 006.25 08.99 12.37 1.37 96.59 
** Significant at 1% by F test; CVe: Coefficient of environmental variation; CVg: Coefficient of genetic variation; VI: Variation index 

(CVg/CVe); h2: Heritability; NNP: number of nodes in plagiotropic branches; DBP: distance between nodes in plagiotropic branches; 

OBL: orthotropic branch length; NNO: number of nodes in orthotropic branches; Hgt: plant height; Diam: canopy diameter, LLT1:  leaf 

length at time 1, LWT1: leaf width at time 1; LLT2: leaf length at time 2, LWT2: leaf width at time 2. 

 

The variation index given by the CVg to CVe ratio ranged from 0.69 to 1.56. 
Values between 0.70 and 2 were previously reported for most traits, considered as suitable 
indicators for genetic variation over the environmental variation (Ferrão et al., 2008). In 

fact, the CVg/CVe ratio indicates which part from the total variance is explained by the 
genotype (Vasconcelos et al., 2012), and when the ratio is greater than or equal to 1, the 
available genetic variation is the most responsible for the estimated experimental data 

variation (Leite et al., 2016). 
Heritability was satisfactory for all variables, ranging from 74.5% (NNP) to 97.1% 

(LWT1). Similarly, Dalcomo et al. (2015) found heritability values from 67.12 to 93.21% 

for most evaluated variables in 22 Conilon coffee genotypes. The heritability in the 
character genetic study has a predictive role, expressing the reliability which the phenotypic 

value represents the genetic value (Ferrão et al., 2008; Dalcomo et al., 2015; Silva et al., 
2015; Carias et al., 2016). High values for this parameter indicate the possibility of selecting 
superior genotypes with a greater accuracy (Oliveira et al., 2015), as well as high values of 

CVg and CVg/CVe ratio (Rodrigues et al., 2012; Oliveira et al., 2015; Leite et al., 2016). 
These results suggest the predominance of genetic components over environmental 
components in six out of 10 variables, thus characterizing favorable conditions for breeding 

from the evaluated traits. 
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The Scott-Knott test enabled the detection of variability among the genotypes for all 
evaluated characteristics (Table 3). Each evaluated characteristic presented at least three 
groups, reaching seven groups in the leaf parameters. 

 
 

Table 3. Average biometric and leaf-related characteristics according to Scott-Knott test of 43 genotypes of 
Coffea canephora cv. Conilon. 

 

Gen NNP DBP OBL NNO Hgt Diam LL1 LW1 LL2 LW2 LA1 LA2 

1 14.66c 3.71d 71.00b 18.00d 149c 138d 14.47c 6.22c 13.62c 7.49b 57.56b 65.48c 

2 14.66c 3.72d 74.66b 17.83d 154b 135d 10.61g 4.41h 11.14e 5.43g 28.35g 38.89g 

3 16.16b 4.01c 78.50b 18.50c 167a 181b 13.24e 5.32f 14.98b 6.77d 43.04e 65.95c 

4 15.50b 4.32b 77.33b 19.66c 144c 168c 15.12b 7.63a 15.76a 8.62a 71.42a 87.98a 

5 14.33c 3.54d 64.66d 19.83c 141c 155c 12.59f 5.47e 15.86a 7.44b 43.80e 76.46b 

6 17.40a 3.71d 75.83b 19.50c 153b 200a 13.94d 5.30f 16.40a 7.00c 46.97d 75.02b 

7 14.00c 4.06c 61.50d 18.83c 138c 163c 12.66f 5.38f 13.37c 5.98e 42.23e 51.01f 

8 17.50b 3.97c 80.16b 21.50b 156b 166b 14.72c 5.49e 12.40d 5.00g 48.44d 38.96f 

9 14.16c 3.78d 59.66d 16.66d 148c 175b 13.82d 5.63e 14.33b 5.76f 47.54d 53.27e 

10 13.16c 4.44b 75.16b 19.16c 151b 168b 13.49e 5.24f 14.50b 6.60d 42.63e 60.71d 

11 13.66c 4.48b 70.50b 17.33d 146c 151d 15.18b 5.77d 15.36a 7.02c 53.94c 67.41c 

12 14.50c 3.44e 62.33d 19.16c 147c 137d 11.04g 4.57h 13.20c 6.07e 31.04g 51.25f 

13 15.00c 3.42e 70.66b 19.16c 155b 160c 12.82e 5.06f 14.61b 6.04e 39.56e 53.11e 

14 13.66c 4.49b 68.50c 15.83d 149c 161c 14.57c 4.78g 15.91a 6.29e 41.09e 60.21e 

15 13.66c 3.72b 76.00b 22.16b 160b 164c 13.11e 5.26f 14.16b 6.46d 42.45e 56.51e 

16 16.66b 3.98c 76.83b 20.77c 160b 160c 12.50f 4.73h 16.01a 6.41d 36.22f 67.15c 

17 15.83b 3.40e 72.33b 19.66c 152b 162c 12.55f 5.12f 14.54b 6.33e 39.73e 59.42d 

18 14.66c 4.28b 73.00b 19.00c 149c 162c 12.08f 4.87g 15.82a 7.18c 34.91f 72.13b 

19 14.66c 3.99c 78.50b 20.33c 166a 184b 15.14b 6.22c 12.83c 5.67f 58.33b 47.57f 

20 15.83b 3.60d 67.00c 19.83c 138c 147d 11.33g 4.60h 13.84c 6.26e 30.42g 55.89e 

21 15.83b 3.77d 63.83d 18.66c 136c 146d 14.58c 6.48b 14.92b 6.74d 57.89b 63.67c 

22 16.83a 3.29e 72.83b 24.66a 141c 141d 13.26e 5.29f 12.25d 5.04g 42.67e 39.43g 

23 16.66a 3.42e 72.33b 22.83b 144c 148d 12.54f 5.07f 12.79c 5.01g 40.11e 39.98g 

24 17.33a 3.58d 74.50b 23.50b 155b 164c 13.66d 4.97g 14.76b 5.78f 40.60e 55.76e 

25 17.33a 4.95a 94.16a 19.33c 174a 179b 14.72c 4.92g 14.75b 5.59f 43.31e 55.47e 

26 16.33b 3.90c 79.83b 20.33c 148c 171b 11.34g 4.68h 15.93a 6.47d 32.69g 66.32c 

27 16.66a 3.58d 68.66c 19.50c 145c 154c 12.26f 5.53e 13.26c 5.76f 42.01e 49.54f 

28 17.83a 3.00 e 70.33b 22.33b 145c 173b 11.42g 4.60h 14.44b 5.85f 31.40g 53.69e 

29 15.83b 3.63d 64.33d 18.66c 145c 156c 13.2e 4.95g 15.70a 6.54d 40.45e 61.10d 

30 14.67c 3.89c 70.33b 17.66d 154b 160c 14.30d 4.88g 16.10a 6.70d 40.97e 67.43c 

31 15.00c 4.24b 73.50b 17.50d 156b 164c 14.48c 5.62e 15.70a 7.66b 51.02 74.66b 

32 14.83c 3.79d 74.00b 20.66c 142c 162c 15.33b 6.29c 15.96a 7.18c 60.52b 75.80b 

33 15.83a 3.44e 75.33b 20.66c 154b 158c 12.5f 4.90g 14.63b 5.99e 35.70f 53.33e 

34 14.66c 4.10c 75.16b 21.50b 143c 175b 12.52f 5.26f 15.07b 6.76d 41.00e 65.53c 

35 15.00c 3.75d 71.50b 19.00c 156b 171b 14.25d 5.22f 16.31a 6.00e 46.19d 63.67c 

36 17.33a 3.86d 72.83b 19.66c 140c 153c 12.92e 5.61e 14.76b 6.39d 44.51d 60.24d 

37 12.00c 4.04c 68.33c 20.66c 147c 158c 17.41a 6.68b 14.83b 5.89f 70.97a 53.92e 

38 15.66b 3.27e 68.00c 25.66a 141c 147d 13.19e 4.60h 13.03c 4.73g 35.65f 36.39g 

39 15.50b 3.57d 74.83b 20.50c 166a 168b 13.04e 5.30f 13.04c 5.08g 42.74e 42.31g 

40 15.00c 3.30e 59.16d 19.16c 136c 155c 12.24f 4.64h 15.42a 6.25e 33.55f 58.49e 

41 15.83b 3.60d 61.16d 17.50d 131c 148 d 13.86d 5.92d 13.62c 5.80f 49.66c 49.10f 

42 15.00c 3.74d 72.00b 25.16a 138c 145d 12.93e 4.74h 14.69b 5.71f 36.45f 51.99f 

43 18.33a 3.50e 69.33c 15.83d 158b 183b 15.12b 5.77d 15.27a 6.18e 52.23c 57.88e 

Means followed by the same letter in the column do not differ between themselves by Scott-Knott test with 5% probability. NNP: number 

of nodes in plagiotropic branches; DBP: distance between nodes of plagiotropic branches; OBL: orthotropic branch length; NNO: number 

of nodes in orthotropic branches; Hgt: plant height; Diam: canopy diameter, LLT1: leaf length at time 1, LWT1: leaf width at time 1; 

LLT2: leaf length at time 1, LWT2: leaf width at time 2; LA1: leaf area at time 1, LA2: leaf area at time 2. 

 
For NNP the 43 genotypes were separated into three groups, with genotype 43 and 

37 showing the highest (18.33) and lowest (12) number of nodes, respectively. For DBP, 5 
groups were formed, in which the longest (4.95 cm) and shortest (3 cm) distance between 
nodes of plagiotropic branches were find in genotypes 25 and 28, respectively. The 

orthotropic branch length (OBL) separated the genotypes into four groups, with values from 
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59.2 cm (genotype 40) to 94.2 cm (genotype 25). NNO also formed four groups, with 
genotype 38 comprising the highest number of nodes (25.7), and genotype 14 the smallest 
(15.83). Plant height (Hgt) formed only three distinct groups, with genotype 25 accounting 

for the tallest plants (174 cm) and genotype 41 the smallest ones (131.33 cm). Canopy 
diameter (Diam) formed four groups, with higher (207 cm) and lower (135 cm) canopy 
values found in genotypes 16 and 2, respectively. 

A considerable variability was found for leaf characteristics, allowing the 
establishment of higher number of groups. For leaf length at time 1 (LLT1) seven groups 
were formed, ranging from 17.41 cm (genotype 37) to 10.61 cm (genotype 2). Leaf width at 

time 1 (LWT1) was divided into eight distinct groups, varying from 7.63 cm (genotype 4) to 
4.41 cm (genotype 2). Leaf length at time 2 (LLT2) formed five groups, from a maximal 

value of 16.40 cm in genotype 6, to the minimum value of 11.14 cm in genotype 2. Leaf 
width at time 2 (LWT2) was separated into seven groups, ranging from 8.62 cm in genotype 
4 to 4.73 cm in genotype 38. 

The clustering of our genotypes was than performed using the Tocher optimization 
method, and the generalized Mahalanobis distance (D

2
) as a genetic dissimilarity measure. 

This allowed the formation of six distinct genotype groups (Table 4), thus suggesting wide 

genetic variability among the genotypes, as the method recommends minimizing the intra-
group distance and maximizing the inter-groups distance. Group I was the most represented 

group, as it included 35 genotypes. The other five groups represented only eight genotypes, 
divided by three (group II), two (group III), or one (groups IV, V, VI) genotypes. 

 
 

Table 4. Clustering between by the Tocher method, considering 10 biometric and leaf-related 

characteristics of 43 genotypes of Coffea canephora cv. Conilon. 

 

Group Genotypes 

I 17 33 13 39 15 32 35 24 5 29 9 40 30 1 12 27 23 20 21 28 34 7 41 36 10 26 18 4 6 3 31 16 11 8 19 

II 22 38 42 

III 14 43 

IV 25 

V 2 

VI 37 

 

The Tocher clustering method was previously used in C. canephora. Studies 
included assessments from 32 clones that comprise three clonal cultivars (Fonseca et al., 
2006), 21 progenies of half-siblings (Ivoglo et al., 2008), and 34 (Covre et al., 2016) and 30 

(Giles et al., 2018, 2019), promising genotypes, which formed three, four, eight, and three 
groups, respectively. 

The cluster analysis performed by the UPGMA hierarchical method using as a 
measure of genetic dissimilarity the generalized Mahalanobis distance (D

2
), resulted in the 

dendrogram that illustrates the genetic distance among the studied genotypes. By 

establishing the maximum limit of 40% of dissimilarity among the genotypes following the 
principles of Mojema (1977), we observed a formation of five distinct groups (Figure 1). 

The first and second groups were composed by genotypes 25 and 43, respectively. 

The third group gathered the highest number of genotypes, totaling 36 (83.7%), which are 
as follows: 31, 11, 14, 4, 10, 34, 18, 26, 3, 6, 16, 1, 2, 28, 12, 20, 29, 5, 40, 9, 7, 36, 27, 21, 
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41, 30, 35, 24, 32, 15, 13, 17, 33, 8, 19, and 39. The fourth group was composed only by 
genotype 37; and the fifth was represented by four genotypes, 22, 23, 38, and 42 (Figure 1). 

 

 
Figure 1. Dendrogram representing the genetic dissimilarity among 43 genotypes of Coffea canephora cv. 

Conilon obtained by the UPGMA clustering method, considering 10 biometric and leaf-related characteristics. 

 
A similar study analyzed the dissimilarity of 21 progenies of C. canephora half-

siblings by the UPGMA method with a cut-off point at 45% found the formation of nine 
groups (Ivoglo et al., 2008). Guedes et al., (2013) studied 12 plant materials from C. 
arabica L. var. Maragogipe Hoert. exFrohner found seven distinct groups with a cut-off 

point at 15%. Similarly, seven and three groups in a population of 34 (Covre et al., 2016) 
and 30 (Giles et al., 2018, 2019) Conilon coffee genotypes were previously reported. 

Additionally, the evaluation of 17 morphoagronomic traits of 22 Conilon coffee genotypes 
formed six groups with cut-off point at 45% (Dalcomo et al., 2015). As this study’s results, 
the above-mentioned words obtained groups composed of progenies/plant materials/isolated 

genotypes, evincing their dissimilarity. 
The cluster analyses from the Tocher optimization method and UPGMA 

hierarchical method were somehow similar in the group’s composition (with only a few 

particularities), wherein such similarity has been previously reported by other works (Ivoglo 
et al., 2008; Guedes et al., 2013; Covre et al., 2016; Giles et al., 2018, 2019). For a better 
understanding and discussion of the main characteristics used in the UPGMA cluster 

analysis, we further analyzed the mean values of each variable (Table 5). 
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Table 5. Means of the biometric and leaf characteristics per group formed by the UPGMA method using 
data from 43 genotypes of C. canephora cv. Conilon. 

   

 Group  NNP DBP OBL NNO Hgt Diam LLT1 LWT1 LLT2 LWT2 

I 12.00 4.04 68.33 20.67 147.83 158.33 17.41 6.69 14.83    5.89 

II 18.33 3.50 69.33 15.83 158.00 183.33 15.09 5.77 15.27    6.18 

III 15.35 3.81 71.21 19.43 149.81 163.06 13.25 5.33 14.67    6.41 

IV 17.33 4.95 94.17 19.33 174.00 179.33 14.73 4.92 14.75    5.59 

 V 16.04 3.43 71.25 24.58 141.33 145.33 12.98 4.93 13.17    5.13 

NNP: number of nodes in plagiotropic branches; DBP: distance between nodes in plagiotropic branches; OBL: orthotropic branch length; 

NNO: number of nodes in orthotropic branches; Hgt: plant height; Diam: canopy diameter, LLT1: leaf length at time 1, LWT1: leaf width 

at time 1; LLT2: leaf length at time 2, LWT2: leaf width at time 2. 

 
Genotype 25, the only member of group I, presented the lowest number of nodes in 

plagiotropic branches, lowest orthotropic branch length, and larger leaf width at T1. Such 

properties should be carefully analyzed, as productive coffee fields usually tend to have a 
shorter distance between nodes and a higher number of nodes (Tomaz et al., 2005), 

diverging from this study’s results. The larger leaf width may favor photosynthetic 
processes in favorable environments due to a larger area for intercepting of luminous energy 
(Brinate et al., 2015; Khan et al., 2016).  

Group II included only the genotype 43, which had the highest number of nodes in 
plagiotropic branches, greater canopy diameter, and greater leaf length in both evaluated 
times. These characteristics are of great interest in coffee trees because they may be 

correlated to a greater productive potential, which one of the main objectives of coffee 
breeding, along to other agronomic traits (Carvalho et al., 2010, 2016).  

The third group was formed by a large number of genotypes (36), and presented 
intermediate values for most of the evaluated traits, except leaf width at T2, which stood out 
with the highest mean. Group IV was composed only by the genotype 37, which was 

separated due to its longer distance between nodes in plagiotropic branches, greater 
orthotropic branches length, and higher plant height. Such characteristics are usually not 
interesting for commercial fields and thereafter may describe a less productive plant.  

The fifth group was composed of genotypes 22, 23, 38, and 42. These genotypes 
differed from others due to their higher number of nodes in orthotropic branches, shorter 
distance between nodes in plagiotropic branches, lower plant height, smaller canopy 

diameter, shorter leaf length, and shorter leaf width at both T1 and T2. These genotypes 
have important characteristics because current breeders recommend smaller coffee trees. 

Higher number of nodes in orthotropic branches is linked to higher number of productive 
branches (Tomaz et al., 2005; Dubberstein et al., 2017), while lower distance between nodes 
may provide a higher number of nodes, which is a remarkable characteristic of plants with 

greater productive potential (Freitas et al., 2007). 
The correlation analysis with all variables resulted in a total of 91 correlations, 42 

of which were significant, with values ranging from very weak to very strong, positive and 

negative (Figure 2). Values from 0.00 to 0.19 are classified as very weak correlation; from 
0.20 to 0.39, weak correlation; from 0.40 to 0.69, moderate correlation; from 0.70 to 0.89, 

strong correlation; and from 0.90 to 1.00, very strong correlation (Devore, 2006). Three 
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aspects should be considered in the interpretation of correlations: magnitude, direction, and 
significance (Nogueira et al., 2012). 

 

 
Figure 2. Correlation between biometric and morphological characteristics of coffee plant leaves (PBL: 

plagiotropic branch length, NNP: number of nodes in plagiotropic branches, DBP: distance between nodes in 

plagiotropic branches, OBL: orthotropic branch length, NNO: number of nodes in orthotropic branches, DBO: 

distance between nodes in orthotropic branches, Hgt: plant height, Diam: canopy diameter, LLT1: leaf length at 

time 1, LWT1: leaf width at time 1, LAT1: leaf area at time 2, LLT2: leaf length at time 2, LWT2: leaf width at 

time 2, LAT2: and leaf area at time 2) of 43 Coffea canephora cv. Conilon genotypes (*, **, and *** correspond 

to significances of P < 0.05, P < 0.01, and P < 0.001, respectively). 

 

The plagiotropic branch length was positively moderate-correlated with the number 
of nodes in plagiotropic branches, distance between nodes in plagiotropic branch, 

orthotropic branch length, canopy diameter, and plant height. Teixeira et al. (2012) found a 
high correlation between plagiotropic branch length and number of nodes and plant height, 
and also that the plagiotropic branch length had a significant direct effect on crop 

production. Another study also indicated a moderate correlation between length and number 
of nodes in plagiotropic branches, and a high correlation value between plagiotropic branch 
length and plant height (Carvalho et al., 2010). Moreover, studies suggested that 

plagiotropic branch length was an indicative of canopy diameter (Freitas et al., 2007), and 
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that the number of nodes and plagiotropic branch length were strongly correlated (Teixeira 
et al., 2013). 

The number of nodes in plagiotropic branches showed a weak negative correlation 

with distance between nodes of plagiotropic branches and a positive correlation with 
orthotropic branch length. Such results suggest that a longer distance between nodes 
decreases the number of nodes, which can be used to predict a lower coffee production 

(Tomaz et al., 2005; Freitas et al., 2007; Teixeira et al., 2012). 
The distance between nodes in plagiotropic branches was positively weakly-

correlated with plant height, leaf area at T1, leaf length at T2, and leaf width at T2. It was 

negative correlated with the number of nodes in orthotropic branches. Moderate correlations 
were found for orthotropic branch length, distance between nodes in the orthotropic 

branches, leaf length at T1, and leaf area at T2. Orthotropic branch length showed moderate 
correlations with distance between nodes in orthotropic branches, plant height, and canopy 
diameter. These results demonstrate the importance of these characteristics for the plant’s 

architecture, thus greater orthotropic branches lengths suggest taller plants. However, such 
outcome is not necessarily interesting, because short-sized plants is desirable and thereafter 
aimed in breeding programs because it facilitates the overall crop management and manual 

or mechanized harvesting (Carvalho et al., 2013). In fact, the positive correlation between 
plant height and distance between nodes in plagiotropic branches indicates the possibility of 

selecting plants of smaller size and shorter distance between nodes (Rocha et al., 2013). In 
high-density coffee fields, there is a preference for short-sized cultivars due to higher yield 
(Freitas et al., 2007). However, there may be positive correlations between plant height and 

crop yield (Carvalho et al., 2010; Valadares et al., 2016), as proven by Teixeira et al. (2012) 
and Bitika and Sakiyama (2017), who found correlations of 0.73 and 0.42, respectively. 

The number of nodes in orthotropic branches was strong correlated with the 

distance between nodes in orthotropic branches and negative weakly-correlated with leaf 
length, leaf width, and leaf area at T2, in accordance with other reports of correlations of 
0.29 and 0.32 for number of nodes in relation to both leaf length and width, respectively 

(Teixeira et al., 2013). The Distance between nodes in orthotropic branches was positively 
and moderately-correlated with plant height and canopy diameter, and negative and weakly-

correlated with leaf width and area at T2. According to Paulo et al. (2005), the plant height 
is determined mainly by the growth/length between nodes. 

The correlation between plant height and canopy diameter was moderate and 

positive (0.58), in line with the positive correlations of 0.65 (Teixeira et al., 2013), and 0.87 
(Bitika and Sakiyama, 2017), although in some cases a negative correlation was also found 
(-0.8102) (Freitas et al., 2007). Moderate and weak correlations were found between canopy 

diameter and leaf length at T1 and T2, respectively. Teixeira et al. (2013) found a 
correlation value of 0.46 between canopy diameter and leaf length. In addition, leaf length 

at T1 was strongly correlated with leaf width and area at T1. Leaf width at T1 was very 
strongly correlated with leaf area at T1. Leaf length at T2 was moderately and strong 
correlated with leaf width and leaf area at T2, respectively. Leaf width and area at T2 were 

very strongly correlated (0.95). 
Strong and very strong correlation values between leaf length and width with leaf 

area in both assessed periods suggest dependence between these variables. Similar results 

were verified by Teixeira et al. (2012), Teixeira et al. (2013) and Schmildt et al. (2015), 
which found values of 0.88 between leaf length and leaf width from the fourth leaf pair for 
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269 C. arabica plant materials. The leaf surface of a coffee plant is an indicative for the 
crop yield potential, wherein larger leaf areas implies in larger surfaces for light 
interception, which may result in higher photosynthetic rates and carbohydrates availability 

to coffee development (Valadares et al., 2016; Walia and Kumar, 2016). Therefore, 
breeding programs should choose plant materials with larger leaves. 

Principal component analysis demonstrated that the first two components PC1 and 

PC2 explained 56.77% of the total variation (Figure 3). It is not a very high value, as the 
first two principal components should ideally concentrate the greater amount of data 
variance in order to explain the divergence among the genotypes groups (Cruz et al., 2011). 

In the Biplot chart, the variables are represented by vectors and the genotypes by numbers. 
The larger the vector, the greater the influence of the variable in the cluster. The smaller the 

angle between the vectors, the greater the correlation between the variables. Therefore, it is 
possible to note that many genotypes are dispersed, indicating considerable divergence 
within the evaluated characteristics. 

 
Figure 3. Principal component analysis for 14 biometrics and leaf-related variables of 43 genotypes of Coffea 

canephora. cv. Conilon (PBL: plagiotropic branch length; NNP: number of nodes in plagiotropic branches; DBP: 

distance between nodes in plagiotropic branches; OBL: orthotropic branch length; NNO: number of nodes in 

orthotropic branches; DBO: distance between nodes in orthotropic branches; Hgt: plant height; Diam: canopy 

diameter, LLT1: leaf length at time 1, LWT1: leaf width at time 1; LAT1: leaf area at time 1; LLT2: leaf length at 

time 1, LWT2: leaf width at time 2; LAT2: leaf area at time 2). 

 
From PC1 it can be observed that there is a large distance between genotypes 25 

and 37. This behavior certainly occurred because genotype 25 presented the longest 

distance between nodes in plagiotropic branches, greatest length of orthotropic branches 
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(94.16 cm), and highest plant height (174 cm). Due to its position and distance from the 
others, it can be considered an outlier. Genotype 37 is distinguished for presenting the 
lowest number of nodes in plagiotropic branches. Both formed isolated groups in the 

dendrogram, thus, these characteristics are very specific compared to the other genotypes. 
Regarding PC2, the longest distance was found between genotypes 4 and 38. The 

characteristics that mostly separated the genotype 38 were the higher number of nodes in 

orthotropic branches and the lower leaf width values. In contrast long and the larger leaves 
were observed in genotype 4 in relation to other genotypes. 

In relation to leaf characteristics, there are large positive factorial loadings in 

components 1 and 2, in which all are concentrated, confirming the high degree of 
correlation among them. Plant height, canopy diameter, orthotropic branch length, 

plagiotropic branch length, distance between nodes in both orthotropic and plagiotropic 
branches have also large positive factorial loadings in PC1 and negative factorial loadings 
in PC2. Therefore, all these traits are related and thus contribute to the plant size and 

structure. The number of nodes in both branches remained isolated, with large negative 
factorial loadings in PC 1 and 2. We noted an overlap for orthotropic branch length plant 
height overlap. Similarly, the plagiotropic branch length was very close to the canopy 

diameter, suggesting that these variables are positively correlated. 
It is important to note that the genotypes distribution is related to the position and 

direction of vectors that most influenced and differentiated each genotype from the other. 
For example, genotype four presented larger leaf area and this was plotted exactly above 
this characteristic. The same happened with genotype 25, the highest plant height, plotted 

below this trait. Other genotypes were plotted close to a given variable as they presented 
similar characteristics in their structure. These analyses confirmed the existing correlations 
between variables, and the distribution of the genotypes indicates different aspects in their 

constitution, thus assisting in the breeding process of plants with desirable characteristics. 

CONCLUSIONS 
 
The estimates of genetic parameters indicated the existence of genetic variability 

and breeding potential among the Conilon coffee genotypes, especially for leaf area, 
orthotropic branch number and length, number of nodes and canopy diameter.  Both Tocher 

optimization and UPGMA hierarchical methods were consistent for clustering the 
genotypes, ordering them in six and five dissimilar groups, respectively, with genotypes 25 
and 37 standing out with the greatest dissimilarity, constituting isolated groups in both 

methods. The correlation and principal components analyses indicated the characteristics 
with a greater degree of correlation, assisting in the choice of more promising plant 
materials. 
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