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ABSTRACT. Use of multivariate statistical algorithms is considered an 
important strategy to quantify genetic similarity. Local varieties and tra-
ditional (heirloom) seeds of genotypes are key sources of genetic varia-
tion. The Universidade Estadual do Norte Fluminense (UENF), Rio de 
Janeiro, Brazil, has a tomato gene bank with accessions that have been 
maintained for more than 40 years. We compared various algorithms to 
estimate genetic distances and quantify the genetic divergence of 40 to-
mato accessions of this collection, based on separate and joint analyses 
of discrete and continuous variables. Differences in continuous variables 
and discrete and joint analyses were calculated based on the Mahalanobis, 
Cole Rodgers and Gower distances. Although opinions differ regarding 
the validity of joint analysis of discrete and continuous data, we found 
that analyzing a larger number of variables together is viable and can help 
in the discrimination of accessions; the information that is generated is 
relevant and promising for both, the accessions conservation and the use 
of genetic resources in breeding programs.
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INTRODUCTION

One of the main concerns of plant breeders is to quantify the degree of dissimilarity 
in genetic resources (Reif et al., 2005; San-San-Yi et al., 2008), since knowledge concern-
ing genetic distances is necessary for optimum organization of gene banks and for identify-
ing parental combinations that produce progenies with maximum genetic variability, thereby 
increasing the chances of obtaining superior individuals (Mohammadi and Prasanna, 2003; 
Crossa and Franco, 2004). 

Use of multivariate statistical algorithms is considered an important strategy to quan-
tify genetic similarity. Multivariate techniques permit standardization of multiple types of in-
formation of a set of characteristics (Podani and Schmera, 2006). The most widely used algo-
rithms are principal component and canonical variable analysis, as well as clustering methods 
(Mohammadi and Prasanna, 2003; Sudré et al., 2007). 

The principle of clustering methods is to join genotypes into groups, so that there 
is uniformity within and heterogeneity among groups. These methods depend on previous 
estimates of dissimilarity measures derived from discrete and continuous (or categorical) vari-
ables. These categorical variables can be defined as binary, nominal or ordinal (Núñez et al., 
2003; Crossa and Franco, 2004; Podani and Schmera, 2006). 

The most widely used dissimilarity distances for continuous variables are the Euclidian 
and Mahalanobis’ generalized distances. The latter has the advantage of considering the residual 
variances and co-variances (Bedrick et al., 2000; Abbey et al., 2005). The arithmetic comple-
ment of the Jaccard index has found widespread use for binary data (Mohammadi and Prasanna, 
2003; Buso et al., 2008), while the Cole-Rodgers distance (Cole-Rodgers et al., 1997) has been 
recommended for multistate variables (Knezovic et al., 2005; Cruz and Carneiro, 2006). 

Distance measures that analyze different types of variables simultaneously have not 
been frequently used to quantify genetic dissimilarity (Vieira et al., 2007), possibly due to 
skepticism by researchers and a lack of free software for these analyses. In 1971, Gower 
proposed simultaneous analysis of continuous and categorical variables, using a 0 to 1 scale, 
regardless of the number of variables, as a basis for data standardization (Crossa and Franco, 
2004); this facilitates construction of a dendrogram (Mason et al., 2005). The Gower algo-
rithm (1971) provides a semi-defined positive matrix and is available both as a part of SAS 
(Mumm and Dudley, 1995) as well as in a free-access software, designated as “R” (“Project 
for Statistical Computing”). Satisfactory results have been obtained by calculating Gower’s 
distance for the grouping of some crops, including Brassica napus (Rodríguez et al., 2005). 

Among grouping methods, hierarchical clustering has been used most frequently, par-
ticularly the single linkage (SL), unweighted pair group method using arithmetic averages 
(UPGMA) and Ward (Mohammadi and Prasanna, 2003; Podani and Schmera, 2006) methods. 
The reliability of clustering methods depends on the magnitude of the cophenetic correlation, 
which is the association between the genetic distance matrix and the matrix based on genotype 
grouping (Sokal and Rohlf, 1962). 

Local varieties and traditional (heirloom) seeds of genotypes are important sources 
of genetic variation; both the conservation and the characterization of these accessions are 
crucial, as they ensure the identification and preservation of useful genes for plant breeding. 
In Brazil, the tomato is a vegetable of great economic importance (Agrianual, 2007), and there 
is a great concern in maintaining the variability of tomato gene banks, which may contain 
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specific genes for pest and disease resistance associated with good yield and organoleptic fruit 
quality. The Universidade Estadual do Norte Fluminense has maintained a tomato germplasm 
collection that gather accessions with more than 40 years, constituting an important source of 
genetic resources for crop improvement. Part of these accessions has been characterized using 
morphological, agronomic and molecular descriptors. We compared various algorithms to es-
timate genetic distances for the quantification of genetic divergence between these accessions, 
using both separate and simultaneous analysis of continuous and discrete variables. 

MATERIAL AND METHODS

Forty Solanum lycopersicum accessions from a gene bank of the Universidade Es-
tadual do Norte Fluminense (UENF) were characterized and evaluated based on continuous 
(morphological and agronomic traits) and discrete (morphological and molecular markers of 
the random amplified polymorphic DNA (RAPD) type) variables. Morphological and agro-
nomic characteristics were measured in field trials made in Campos dos Goytacazes, Rio de 
Janeiro, Brazil, in a randomized block design with three replications and 16 plants per plot. 
Twenty-five descriptors proposed by the Bioversity International were used (Table 1).

Traits	 Description

A. Vegetative descriptors 
     Plant growth type	 1-4 scale (1 = Dwarf, 2 = Determinate, 3 = Semi-determinate, 4 = Indeterminate)
     Foliage density	 1-3 scale (1 = Sparse, 2 = Intermediate, 3 = Dense)
     Leaf type	 1-3 scale (1 = Dwarf, 2 = Potato leaf type, 3 = Standard)
     Number of days to flowering 	 From sowing until 50% of plants have at least one open flower in a plot
B. Inflorescence and fruit
     Corolla color	 1-4 scale (1 = White, 2 = Yellow, 3 = Orange)
     Exterior color of immature fruit	 1-5 scale (1 = Greenish-white, 2 = Light green, 3 = Green, 4 = Dark green, 5 = Very dark green)
     Exterior color of mature fruit 	 1-5 scale (1 = Green, 2 = Yellow, 3 = Orange, 4 = Pink, 5 = Red)
     Flesh color of pericarp (interior)	 1-5 scale (1 = Green, 2 = Yellow, 3 = Orange, 4 = Pink, 5 = Red)
     Fruit size	 1-5 scale (1 = Very small, 2 = Small, 3 = Intermediate, 4 = Large, 5 = Very large)
     Predominant fruit shape	 1-8 scale (1 = oblate, 2 = Slightly flattened, 3 = Rounded, 4 = High rounded, 5 = Heart-
	    shaped, 6 = Long oblong, 7 = Pear-shaped, 8 = Plum-shaped)
     Presence of green shoulder on the fruit	 0 (Absent), 1 (Present)
     Intensity of green shoulder  	 1-3 scale (1 = Slight, 2 = Intermediate, 3 = Strong)
     Radial cracking	 1-4 scale (1 = Corky lines, 2 = Slight, 3 = Intermediate, 4 = Severe)
     Concentric cracking	 1-4 scale (1 = Corky lines, 2 = Slight, 3 = Intermediate, 4 = Severe)
     Number of locules per fruit	 Counted on at least 10 fruits: 0 (Absent), 1 (Present)
     Presence of open locules 	 Counting every fruit harvested from each plant
     Total fruit number per plant	 Total fruit number per plant and plant number ratio 
     Mean fruit number per plant	 Assessed in 10 fruits considering all plants
     Total fruit weight (g)	 Total fruit weight and plant number ratio
     Mean fruit weight  (g)	 Recorded from stem tip to flower tip at maturity, rounded to one decimal place 
     Fruit length (mm)	 Recorded at the largest diameter of cross-sectioned fruits at maturity, rounded to one 
     Fruit width (mm)	 decimal place
     Number of days to maturity 	 From sowing until 50% of plants have at least one mature fruit 
     Number of flowers per inflorescence	 Mean of 10 plants 
     Soluble solids	 Measures in Brix units of two composite raw juice samples of at least five fruits per juice sample

Table 1. Descriptors used for characterization and evaluation of 40 tomato accessions from the gene bank of the 
UENF, Brazil.

UENF = Universidade Estadual do Norte Fluminense.
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For molecular characterization, 300 mg of the leaves was collected from 35-day-old 
tomato plants grown in a greenhouse. DNA was extracted based on the protocol of Doyle and 
Doyle (1987). The process of DNA amplification followed Williams et al. (1990). Electropho-
retic process gels were stained with ethidium bromide and photographed under UV light using 
Eagle Eye II - Stratagene equipment. The following primers were selected: OPPA 03, OPAA 
04, OPAA 18, OPAB 05, OPAB 07, OPAB 09, OPAB 14, OPAC 06, OPAH 01, OPC 08, OPC 
09, OPC 11, OPC 15, OPE 06, OPE 07, OPE 18, OPG 16, IPO 12, OPK 16, NPO 06, NPO 08, 
OPO 10, OPT 16, OPW 06, OPW 13, and OPV 12, of Operon Technologies. 

For the continuous variables, an analysis of variance was performed at a probability of 
1%, and Mahalanobis’ generalized distances were calculated to construct the genetic distance 
matrix. The discrete variables were analyzed based on the distance proposed by Cole-Rodgers 
(Cole-Rodgers et al., 1997), disregarding the combination 0-0 and considering agreement or 
disagreement when values were >1. In this situation, this distance is equal to the arithmetic 
complement of the Jaccard index.

The estimate of the genetic distance matrix for the joint analysis of variables was ob-
tained based on the Gower algorithm (1971), given by: 

(Equation 1)

where K is the number of variables (k = 1, 2,…, p); i and j any two individuals; Wijk is a weight 
attributed to comparison ijk, assigning 1 if comparisons are valid and 0 if comparisons are 
invalid (if the value of the variable is absent in one or both individuals); Sijk is the contribution 
of variable K to the similarity between individuals i and j, with values between 0 and 1. If the 
value of variable K is the same for both individuals i and j, for a nominal variable, then Sijk = 
1, otherwise Sijk = 0; for a continuous variable

(Equation 2)

where Xik and Xjk are values of variable K for the individuals i and j, respectively, and RK is 
the range (minimum subtracted from the maximum value) of variable K in the sample. The 
division by RK eliminates the differences between variable scales and produces a value in the 
range [0, 1] with equal weights. 

The accessions were clustered by the SL, UPGMA and Ward methods. The groups 
were established using a horizontal cut-off value of the distance means for each group formed. 
The groups were validated by the cophenetic correlation coefficient (Sokal and Rohlf, 1962) 
and the t-test (Steel and Torrie, 1980). The distance matrices were compared with 1000 per-
mutations using the Mantel’s correlation test (Mantel, 1967). 

The data were analyzed with the program R (http://www.r-project.org), using the 
package “clusters” and the procedure proposed by Daisy (Maechler, 2007). 
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RESULTS AND DISCUSSION

Except for soluble solids, the other continuous variables were significant at 1% probability 
by the F-test, which means that these genotypes have significant variability. Variability in multistate 
traits was also found in these accessions, since they differed for all traits except for plant growth 
habit and corolla color; all of them had an indeterminate growth habit and yellow corollas. 

The binary traits consisted of RAPD markers; 131 markers were observed with 26 
primers. Of these, 89 were polymorphic; therefore, each primer generated a mean of 3.42 poly-
morphic bands (range 1-6). UPGMA hierarchical clustering was more reliable than Ward and 
SL in all analysis situations, whether the variables were considered to be separately or jointly, 
based on cophenetic correlations (Table 2). Sokal and Rohlf (1962) indicated that a cophenetic 
correlation above 0.80 indicates a good adjustment of the original distance matrices; Moham-
madi and Prasanna (2003) and Podani and Schmera (2006) came to the same conclusion. 

Distance	 	  Clusters

	 UPGMA	 SL	 Ward

Mahalanobis	 0.83	 0.78	 0.70
Cole-Rodgers	 0.86	 0.79	 0.63
Gower	 0.87	 0.80	 0.61

Table 2. Cophenetic correlations* between the dissimilarity matrix and the three clustering methods used to 
estimate the genetic divergence in 40 tomato accessions of the UENF gene bank.

*All correlations were significant at p = 0.01 by the t-test. UENF = Universidade Estadual do Norte Fluminense; 
UPGMA = unweighted pair group method using arithmetic averages; SL = single linkage.

Four groups were clustered by the UPGMA method, based on continuous data 
(Figure 1). Accessions UENF 178, 201, 202, and 213 of the cherry group were allocated to 
group I; group II, the largest, was formed by 33 accessions with wide variability, especially 
for mean number of fruit (from 8 to 22 fruit per plant) and mean fruit weight (from 23 to 
70); group III consisted of accession UENF 224 alone, and group IV comprised UENF 196 
and 197. In a comparative analysis, 224 UENF did not join group IV, most likely due to 
the higher total number of fruit, total fruit weight and mean number of fruit compared to 
accessions UENF 196 and 197. Furthermore, the mean fruit weight and fruit width of the 
accessions of group IV were higher than for the other accessions. Nonetheless, UENF 197 
and 196 were grouped together as they had the lowest values for mean fruit number (3 and 
5). This shows that the genotypic superiority of this group in terms of fruit weight is not 
sufficient for commercial production, in view of their extremely low productivity. 

Eleven groups were formed by the discrete (multistate and binary) data (Figure 2). The 
groups with the most genotypes were X and XI, both with 14 accessions; these genotypes generally 
had very similar fruit shapes. Slightly flattened and rounded types were predominant, with slight 
susceptibility to cracking and small or intermediate fruit size. Polymorphism for RAPD markers 
was greater in groups X and XI, with 33 and 42 polymorphic bands, respectively. This intrapopu-
lational variability in these groups is therefore not negligible; these are groups that join accessions 
with a small genetic distance of 32% of the maximum multistate variability, e.g., between UENF 
186 and 218 in group X, and between UENF 180 and 189 in group XI, with a genetic distance 
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value of 0.09. The other groups contained one or two genotypes: groups I, II, III, V, VI, and VII 
with one accession, and groups IV, VIII, and IX with two accessions each. But even in groups that 
contained two accessions, there was a high magnitude of intragroup distance, with values of 0.15, 
0.17, and 0.15 among genotypes allocated to groups IV, VIII, and IX, respectively. 

Figure 1. UPGMA dendrogram based on the analysis of 40 accessions using the Mahalanobis distance and 
continuous variables. UENF = Universidade Estadual do Norte Fluminense.

Figure 2. UPGMA dendrogram based on the analysis of 40 accessions using the Cole-Rodgers distance and the 
discrete (multistate and binary) variables. UENF = Universidade Estadual do Norte Fluminense.
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Large differences in grouping can be seen in Figures 1 and 2. They not only had differ-
ent numbers of groups, but the cherry group accessions, clustered together by the continuous 
variables, were grouped separately when evaluated by discrete variables. This was the case for 
the genotypes UENF 178, 201, 202, and 213, which were arranged in the groups II, V, VI and 
X, respectively (Figure 2). Group II, based on continuous variables, was separated into seven 
different groups by discrete variables. Genotype discrimination was, therefore, more detailed 
by discrete than by continuous variables. 

Similarly to the discrete variable analysis, Gower’s algorithm formed 11 groups (Fig-
ure 3). The relationships between Figures 2 and 3 can be summarized as: a) groups I, III, IV, IX, 
and XI by Gower’s distance were similar, respectively, to I, VII, VIII, II and III, based on dis-
crete variables; b) based on Gower’s distance, groups V and VI contained 14 accessions each; 
of the 14 accessions of group V, 10 were grouped in group X, while 12 accessions of group VI 
composed group XI, by discrete variables, and c) accessions UENF 196 and 197, which formed 
group VIII by Gower’s distance, were part of group X by discrete variables. In turn, accessions 
UENF 201 and 202, separated into different groups by discrete variables, composed a single 
group - group II - by Gower’s algorithm. There was disagreement; accessions UENF 177 and 
225, which were grouped together in group IV, as well as UENF 208 and 209 in group IX by 
discrete variables, were allocated into separate groups by Gower’s algorithm.

Figure 3. UPGMA dendrogram based on the analysis of 40 accessions using the Gower distance and the mixed 
(continuous and discrete) variables. UENF = Universidade Estadual do Norte Fluminense.

The greater similarity among groups based on discrete variables and Gower’s dis-
tance, as opposed to the grouping by continuous variables, deserves attention because, in the 
former, the analyses of the discrete variables as well as the joint analysis of all variables were 
more efficient in the discrimination of dissimilar genotypes. However, this premise requires 
care in interpretation, since we only analyzed 10 continuous variables altogether, while the 
discrete and joint (continuous plus discrete), totaled 146 and 156 data points, respectively. 
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Thus, for the latter, there are 146 and 156 data points that may or may not be consistent 
among accessions, and in the distance calculation proposed by Cole-Rodgers as well as by 
Gower; what matters is the agreement or disagreement of discrete variables. This can generate 
improved evaluation of genetic dissimilarity based on discrete differences, as if it were a tan-
dem procedure, and consequently favors a clearer separation of accessions. Nevertheless, the 
capacity of continuous variables for genetic discrimination is unquestionable, since we found 
high variability for these traits, based on the F-test. 

The value of the Mantel correlation was only moderately high (r = 0.40) in the matrices of 
discrete and continuous variables, indicating that the Mahalanobis and Cole-Rodgers techniques 
sampled different genome regions. The situation was similar in the matrices of joint and continuous 
variables, based on the correlation of 0.49. On the other hand, the correlation between the joint ma-
trix (Gower) and Cole-Rodgers was high (r = 0.88). This indicated that the matrices from discrete 
and joint data can be used indifferently. This may be true when there is considerable qualitative 
data and little quantitative data. Similarly, Vieira et al. (2007), in a study of 19 wheat genotypes 
using amplified fragment length polymorphism molecular and morphological quantitative mark-
ers, observed a moderate correlation between the morphological and molecular matrices, a high 
correlation between the matrices of the joint analysis (molecular and morphological markers) with 
the morphological matrix, and a moderate correlation between the matrices of the joint analysis 
with the morphological matrix. They concluded that, due to moderate correlation between the joint 
and the morphological data matrix, the genotype divergence data should be considered separately. 
However, Franco et al. (2001) suggested that genotypes are best discriminated by the simultaneous 
analysis of morphological and molecular data, determining a priori the minimum number of mark-
ers that lead to the same results as when combined with all markers. 

Although opinions differ regarding the use of joint analysis of discrete and continuous 
data, we found that using a greater number of variables analyzed together is viable and can help 
separate accessions, provided that the information that is generated is relevant and useful both 
for the conservation of accessions and for the use of genetic resources in breeding programs. 
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