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ABSTRACT. Sex reversal due to duplication of the Xp21 dosage-sensitive
sex reversal locus results in XY females with gonadal dysgenesis. Pure
Xp disomy (without a concurrent loss of genetic material) can occur by
translocation or interstitial duplication. The case reported here is the rare
form with a t(Xp;Yp). The combination of conventional clinical cytogenetic
techniques, microsatellite analysis and high-density microarrays identified
the X-chromosome breakpoint as centromeric of the NROBI gene and its
control elements. Cytogenetics and array technology complemented each
other in characterizing the translocation event and the extent of the dosage-
sensitive sex reversal critical region on the derivative Y-chromosome. The
implications of this analysis also lie in genetic counseling that highlight
the likely de novo nature of a paternal meiotic event.
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INTRODUCTION

Gonadal development is bipotential during the first 7-8 weeks of mammalian embryo-
genesis. Subsequent differentiation occurs to give rise to testes or ovaries in individuals with a
46,XY or 46,XX karyotype, respectively. The SRY gene plays a pivotal role in testis determi-
nation, but several other genes encode for proteins that are required for gonad development.
These genes include DHH, LHCGR, SF1, WT'l, WNT4, NROBI (DAXI), and SOX9. Mutations
in these genes can lead to gonadal disorder of sex development (Table 1).

Table 1. Genes other than SRY that are implicated in gonadal disorder of sex development.

Gene Duplications Haploinsufficiency

DHH Gonadal dysgenesis +/- polyneuropathy:
homozygous point mutation (Umehara et al., 2000; Canto et al., 2004)

LHCGR Leydig cell hypoplasia and under-virilization in 46,XY male, hypergonadotropic
hypogonadism in 46,XX females: heterozygous inactivating mutations (Chan, 1998)

SF1 Gonadal dysgenesis/agenesis, +/- adrenal insufficiency, 46,XY sex reversal:
heterozygous point/microdeletion mutation (Achermann et al., 1999; Correa et al., 2004;
Mallet et al., 2004; Hasegawa et al., 2004; Lin et al., 2007; Kohler et al., 2008);
homozygous point mutation (Achermann et al., 2002).

WwTl1 Gonadal dysgenesis, 46,XY sex reversal: heterozygous deletion (Le Caignec et al., 2007)

WNT4 46,XY sex reversal Absence of uterus and androgen excess, 46,XX female: dominant
(Jordan et al., 2001) negative loss of function mutation (Biason-Lauber et al., 2004, 2007)

NROBI (DAX1)  Gonadal dysgenesis, 46,XY Congenital adrenal hypoplasia and hypogonadic hypogonadism (Zanaria et al., 1994;
sex reversal (Bardoni et al., 1994) Muscatelli et al., 1994)

SOX9 46XX sex reversal (mosaicism of Campomelic dysplasia and gonadal dysgenesis, 46,XY sex reversal: heterozygous
duplication; Huang et al., 1999) point mutation (Foster et al., 1994; Cameron et al., 1996).

Of these genes, there are limited reports of individuals carrying duplications of the
dosage-sensitive sex reversal (DSS) critical region on the X-chromosome that encompasses
the NROBI and MAGEB genes (Xp21.2-p21.3) (Barbaro et al., 2007). Duplication of this re-
gion, which would otherwise be subject to X-inactivation, is associated with isolated gonadal
dysgenesis together with a range of extragonadal abnormalities (Barbaro et al., 2008). We
report here a 46,X,+mar female carrying a rare unbalanced t(Xp;Yp) rearrangement, together
with a high-resolution analysis of the X-chromosome breakpoint.

CLINICAL REPORT

The patient is the first child to a non-consanguineous couple. The mother’s pregnan-
cy was unremarkable until the last month when fetal growth retardation was documented. An
ultrasound scan at that time demonstrated a hypoplastic corpus callosum and this was con-
firmed on a postnatal ultrasound. The child was born at term weighing 2.83 kg. She was for-
mula fed and gained weight slowly. At four months of age, a brain magnetic resonance scan
showed diffuse thinning of the corpus callosum and in particular the splenium was markedly
hypoplastic. Prominence of the lateral ventricles was also noted. At 8 months of age, she was
still unable to sit independently. Examination at that time showed her length between the 10th
and 25th percentile, weight just below the third percentile and head circumference between
the 50th and 75th percentile. She had generalised hypotonia, but she was able to fix and fol-
low and smile. In the facies, there was mild metopic ridging, a bulbous nasal tip, pinched
nares with protuberant columella, prominence of the philtral pillars, and a small mouth with
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normal palate and uvula. She had normal female external genitalia. When last assessed at 2
years of age, she was able to sit, but was not crawling or walking and was able to make simple
noises. A pelvic ultrasound performed at 21 months of age demonstrated a normal appearing
uterus with dimensions of 23 x 8 x 10 mm. Ovarian tissue was not definitely identified and
no testicular tissue was identified. An exploratory laparatomy with removal of any gonadal
tissue was advised but has not been performed yet.

Genetic analysis

Conventional chromosome analysis showed a 46,X,+mar karyotype (Figure 1).
The marker chromosome was found to be a derivative Y originating from a t(Xp;Yp), us-
ing standard fluorescence in situ hybridisation (FISH) analysis. The breakpoint within Yp
was distal to the SRY gene, and the additional Xp material was estimated to extend from
Xpter to Xp21.

Figure 1. Ideograms and GTG-banded chromosomes showing the normal X-chromosome (left) and derivative
Y-chromosome (right). The Xp21.1 breakpoint is marked by an arrow.

Following the result of the patient’s 46,X,der(Y)t(X;Y)(p21.1;p11.3) karyotype, a
number of Xp21.3-21.2 microsatellite loci were analysed to assess the extent of the du-
plicated X-chromosome region. Primers were used that had been designed against known
sequence-tagged site markers; however, primers were also designed using the FastPCR pro-
gramme (http://www.biocenter.helsinki.fi/bi/Programs/fastpcr.htm) against di- and tri-nu-
cleotide repeats localised to a small genomic region encompassing the NROBI gene (UCSC
genome browser; http://genome.ucsc.edu/); see Table 2. All primers were assessed using
SNPcheck (http://ngrl.man.ac.uk/SNPCheck/SNPCheck.html#) to confirm that they did not
overlie single-nucleotide polymorphisms.
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The analysis of the extent of heterozygosity in our patient indicated that the proximal
breakpoint on the X-chromosome lay further centromeric than DXS992, and indicated that the
patient carried two copies of the NROBI gene (accession No. NM_000475; chrX co-ordinates
30232460-30237416 bp according to the NCBI36/hg18 human genome assembly); see Figure 2.
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Figure 2. Localisation of Xpter microsatellites. Schematic taken from the UCSC genome browser (http://genome.
ucsc.edu/) showing sequence-tagged site (STS) microsatellite loci that were used in this study (indicated by blue
vertical arrows), together with an amplified view of the region encompassing the NROBI gene showing di- and
tri-nucleotide repeat loci (L2-L6); these loci are indicated by vertical red arrows. Homozygosity (Hom) and
heterozygosity (Het) at the microsatellite loci for the patient described here are indicated.

To achieve more precision concerning the extent of the duplicated X-chromosome
region, chromosomal microarray analysis (CMA) was performed on DNA extracted from pe-
ripheral blood using the Affymetrix® Cytogenetics Whole-Genome 2.7M Array, according to
manufacturer instructions. Regions of copy number change were calculated using the Affyme-
trix Chromosome Analysis Suite software (ChAS) v.1.0.1.

Array analysis determined a complete complement of the male-specific Y-chromosome
region and then confirmed the presence of the SRY gene identified by FISH. A large duplication
of the distal Xp-region was estimated to comprise from Xpter to within Xp21.1 (chromosome
co-ordinates X: 1-31,656,721). This region encompasses the NROBI and MAGEB genes, and
precisely mapped the proximal X-chromosome breakpoint to intron 52 of the dystrophin gene
(Figure 3). The analysis of this intronic region shows repetitive elements such as AluY (CENSOR;
Kohany et al., 2006; http://www.girinst.org/censor/index.php). Despite the resolution afforded by
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the Affymetrix array used here, the data do not enable any conclusion to be made regarding the
mechanism of the translocation event, which is likely to involve non-homologous end-joining as
opposed to non-allelic homologous recombination (Erdogan et al., 2006; Chen et al., 2008).
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Figure 3. Duplicated region of Xp. Schematic taken from the UCSC genome browser (http://genome.ucsc.edu/)
showing the extent of the duplicated region of Xp and the graphical output from ChAS analysis of the Affymetrix®
array data. The NROB/ gene is indicated.

DISCUSSION

Sex reversal due to Xp21 disomy is rare and has been observed as a result of an in-
terstitial duplication of Xp21, an X;A translocation or an X;Y translocation (Sanlaville et al.,
2004; Barbaro et al., 2007, 2008; Tzschach et al., 2008). The patient reported here is one of
a small number of reported cases resulting from an X;Y translocation (Table 3), and the only
one that has been resolved at the level of oligonucleotide-based CMA. Four of these patients
had female external genitalia, and one was ambiguous. Most had no identifiable gonadal tissue
by ultrasound; one had streak gonads that went on to develop gonadoblastoma. All exhibited
mental retardation, hypotonia, and dysmorphic facial features.

The extent of the extragonadal abnormalities observed in these individuals nominal-
ly relates to the size of the duplicated X-chromosome segment. However, the correlation of
genotype and extragonadal phenotype is difficult in these cases due to the large number of
duplicated genes involved and the absence of precise breakpoint characterisation. In addition,
factors such as gene disruption or positional effects due to translocation may also play a role in
phenotypic variability, including the DSS phenotype. There is at least one t(X;Y) SRY+ case
reported with duplication of the NROBI gene, but only partial gonadal dysgenesis (Table 3).
It has been suggested that the Xp breakpoint in this case may have disrupted the 5’ regulatory
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region of the NROBI gene resulting in incomplete DSS (Barbaro et al., 2008). In contrast, the
patient reported here has a breakpoint that is further centromeric, containing the entire NROB/
gene and control elements and therefore exhibiting complete DSS.

The risk of developing a gonadal malignancy for these patients is the same as those
faced by other phenotypic females who carry Y-chromosome material. Therefore pre-emptive
removal of the gonadal tissue is often recommended.

The X;Y translocated forms of Xp21 duplication are isolated events, which arise de
novo during paternal meiosis. This is in contrast to patients with interstitial Xp21 duplications
and X;A translocations, which can be inherited from phenotypically normal female carriers
(Barbaro et al., 2007). These scenarios have significantly different genetic counselling impli-
cations with family studies a likely recommendation in the latter two instances.

Until recently, the diagnosis of cases with X;Y translocations was characterised us-
ing GTG-banding and FISH. The latter method requires multiple rounds of testing, which is
time-consuming and expensive. In contrast, the combination of GTG-banding and CMA used
here is more straight forward. Critically, neither conventional GTG-banding nor CMA alone
could detect both the presence of the DSS locus and the translocation in the patient reported
here. Therefore, together, these techniques aid in identifying chromosome rearrangements and
dosage changes in genes that play a pivotal role in disorders of sex development.
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