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ABSTRACT. The accuracy of quantitative trait loci (QTLs) identified 
using different sample sizes and marker densities was evaluated in 
different genetic models. Model I assumed one additive QTL; Model 
II assumed three additive QTLs plus one pair of epistatic QTLs; and 
Model III assumed two additive QTLs with opposite genetic effects 
plus two pairs of epistatic QTLs. Recombinant inbred lines (RILs) (50-
1500 samples) were simulated according to the Models to study the 
influence of different sample sizes under different genetic models on 
QTL mapping accuracy. RILs with 10-100 target chromosome markers 
were simulated according to Models I and II to evaluate the influence of 
marker density on QTL mapping accuracy. Different marker densities 
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did not significantly influence accurate estimation of genetic effects 
with simple additive models, but influenced QTL mapping accuracy 
in the additive and epistatic models. The optimum marker density was 
approximately 20 markers when the recombination fraction between 
two adjacent markers was 0.056 in the additive and epistatic models. A 
sample size of 150 was sufficient for detecting simple additive QTLs. 
Thus, a sample size of approximately 450 is needed to detect QTLs 
with additive and epistatic models. Sample size must be approximately 
750 to detect QTLs with additive, epistatic, and combined effects 
between QTLs. The sample size should be increased to >750 if the 
genetic models of the data set become more complicated than Model 
III. Our results provide a theoretical basis for marker-assisted selection 
breeding and molecular design breeding.

Key words: Quantitative trait loci mapping accuracy; Sample size; 
Recombinant inbred lines; Marker densities; Computer simulation

INTRODUCTION

An increasing number of quantitative trait loci (QTL) have been identified in various 
species because of the development of different QTL mapping methods (Edwards et al., 
1987; Lander and Botstein, 1989; Zeng, 1994; Kao et al., 1999) and quantitative genetics. 
QTL identification methods are based on the construction of genetic linkage maps. The first 
step of the QTL mapping process is the development of a genetically segregated population 
and to determine the genetic value data and phenotypic value data of quantitative traits. The 
second step is determination of the relationship between the genetic value and phenotypic 
value using specific statistical methods. Finally, the third step is to identify putative QTLs on 
different groups of linkage maps and evaluate the genetic effects of the putative QTLs. Since 
Lander and Botstein (1989) reported the first QTL analysis software (Mapmaker/QTL), many 
other QTL mapping software programs have been developed and reported, including QTL 
Cartographer (Basten et al., 1994), PLABQTL (Utz and Melchinger, 1996), Map Manager 
(Manly et al., 2001), QGene (Nelson, 1997), MapQTL (Van Ooijen and Maliepaard, 1996), 
PGRI (Lu and Liu, 1995), QTLMAPPER (Wang et al., 2003), IciMapping (Li et al., 2007), 
and QTL network (Yang et al., 2007, 2008).

QTL mapping is a useful method for identifying genetic regions responsible for 
important phenotype variations (Takuno et al., 2012). QTL mapping has been widely used 
in plants and animals for several years and large numbers of QTL have been detected in 
various species. For example, a total of 8646 and 1747 QTLs have been identified in rice 
(Oryza sativa) and maize (Zea mays subsp mays), respectively (Gramene QTL database). A 
key point in QTL mapping is the accuracy of the QTL. Real QTLs can be used for marker-
assisted breeding or map-based cloning, whereas false-positive QTLs can mislead mapping 
application results. Generally, it is easier to detect the existence of a QTL than to confirm the 
accurate position of the QTL and accurately estimate all of its genetic effects. Therefore, it is 
critical to accurately map target QTLs for marker-assisted breeding and map-based cloning.

The primary factors influencing QTL mapping accuracy are the sample size, marker 
density, QTL position on the chromosome, heritability of the objective traits, and QTL mapping 
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procedures. A previous study evaluated the influence of QTL mapping procedures on accuracy 
(Su et al., 2013). Among the factors influencing accuracy, QTL position and trait heritability 
were relatively fixed, whereas sample size and marker density could be controlled to some 
extent. Theoretically, QTL mapping accuracy increases concomitantly with increasing marker 
density; however, QTL mapping accuracy was shown to decrease with increasing marker 
density in a previous study (He et al., 2000). In theory, recombination events increase with 
increasing sample size; therefore, QTL mapping accuracy may increase if a greater amount of 
recombination information is supplied for the QTL analysis.

In this study, recombinant inbred line (RIL) populations with different types of genetic 
models were produced by computer simulation. The inclusive composite interval mapping 
(ICIM) mapping procedure in IciMapping Version 4.1 (released by a quantitative genetic 
research group from the Chinese Academy of Agricultural Sciences on January 2016, China) 
was used for QTL analysis of the simulated data. Our goal was to determine sample sizes 
and marker densities suitable for RILs with different genetic models and to determine QTL 
mapping strategies for unknown data from different genetic models by comparing the degree 
of coincidence of the QTL mapping results obtained from the RILs with different sample sizes 
and marker densities.

MATERIAL AND METHODS

RIL population simulation

Simulation of genotype and QTLs

The computer simulation method proposed by He et al. (2001) was used as a reference 
in this study. The method assumed that there were two adjacent markers named Mk and Mk+1 on 
a chromosome with a recombination frequency r. The Mk and Mk+1 genotypes were recorded as 
xk and xk+1. Values of ‘0’ and ‘1’ assigned to xk and xk+1 indicated that the DNA of the two loci 
were from two homozygous parents P1 and P2, respectively. When the value of xk is known 
and confirmed as ‘1’, the genotype of xk+1 can be inferred and confirmed from the known xk 
genotype. It is assumed that there are n1 individuals whose genotypes are all xk with values of 
‘1’ in n individuals. A total of n1 uniformly distributed random numbers between 0 and 1 were 
generated continuously and recorded as ‘rnd’. The value of xk+1 was set to ‘1’ when rnd ≤ (1-r) 
2. The value of xk+1 was set to ‘0’ when rnd > (1-r)2. The values of xk+2, xk+3, etc. can be inferred 
and confirmed according to the known xk+1 value. When the value of xk is known and confirmed 
as ‘0’, determination of the values of xk+1, xk+2, xk+3, etc. is the same as when the value of xk is 
‘1’. For confirmation of the marker genotypes on the starting position of the simulated linkage 
group, the probability of any xk value being determined as 0 or 1 is 0.50. A total of n random 
numbers between 0 and 1 were generated continuously such that xk = 0 when rnd ≤ 0.5 and xk 
= 1 when rnd > 0.50. The same method with the confirmation of marker genotypes was applied 
to confirm the QTL genotype and was recorded as xQ.

A total of 38 groups of RIL data were produced by computer simulation and used 
for QTL detection. Based on Model I, seven groups of RIL data named as M-ss1-M-ss7 with 
different sample sizes (50, 150, 250, 350, 450, 550, and 1000 lines) were constructed. In each 
simulated RIL, one linkage group named as chr1 and containing 20 markers was generated 
and used for QTL analysis. The 20 markers were named as M1-M20. The related QTLs Qset1 
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and M10 were considered to be in complete linkage. Recombination fractions between two 
adjacent markers were randomly generated to be between 0 and 0.1 (Table S1). Based on 
Model I, six groups of RIL data named as M-sd1-M-sd6 with different marker densities [10 
(M1-M10), 20 (M1-M20), 30 (M1-M30), 40 (M1-M40), 50 (M1-M50), and 100 (M1-M100) 
markers] on the linkage group were constructed by computer simulation. The sample sizes 
of M-sd1-M-sd7 were all 350. In each simulated RIL, one linkage group named as chr1 was 
generated and used for QTL analysis. The related QTLs Qset1 and M4 in M-sd1, Qset1 and M8 in 
M-sd2, Qset1 and M11 in M-sd3, Qset1 and M14 in M-sd4, Qset1 and M16 in M-sd5, Qset1 and M32 
in M-sd6 and M10 were considered to be in complete linkage. The recombination fractions 
between two adjacent markers of M-sd1-M-sd6 were 0.14, 0.078, 0.017, 0.056, 0.041, and 
0.035, respectively.

Based on Model II, eight groups of RIL data named as M-cs1-M-cs8 were constructed 
with different sample sizes (50, 150, 250, 350, 450, 550, 750, and 1000 lines). In each simulated 
RIL of M-cs1-M-cs8, a total three linkage groups named as chr1, chr2, and chr3 containing 20 
markers each (M1-M20, M21-M40, and M41-M60) were generated and used for QTL analysis. 
The related QTLs Qset1, Qset2, and Qset3 and M10, M32, and M54 were considered to be in 
complete linkage, respectively. The recombination fractions between two adjacent markers 
were randomly generated to be between 0 and 0.1 (Table S2). Based on Model II, six groups 
of RIL data named as M-cd1-M-cd6 with different marker densities (10, 20, 30, 40, 50, and 
100 markers) on each of three linkage groups were constructed by computer simulation. The 
sample sizes of M-cd1-M-cd6 were all 350. The detailed parameters applied for QTL mapping 
analysis of M-cd1-M-cd6 are listed in Table S3.

Based on Model III, eleven groups of RIL data named as M-tc1-M-tc11 were 
constructed with different sample sizes (50, 150, 250, 350, 450, 550, 650, 750, 850, 1000, 
and 1500 lines). In each simulated RIL of M-tc1-M-tc11, a total three linkage groups named 
as chr1, chr2, and chr3 containing 30 markers each (M1-M30, M31-M60, and M61-M90) 
were generated and used for QTL analysis. The related QTLs Qset1, Qset2, Qset4, Qset5, and M8, 
M10, M41, and M76 were considered to be in complete linkage, respectively. Qset1 and Qset2 
were two adjacent QTLs located on chr1. Qset4 and Qset5 had no additive effects, but there are 
interaction effects for Qset1 × Qset4 and Qset2 × Qset5. The recombination fractions between two 
adjacent markers were set to 0.056 in M-tc1-M-tc11.

Confirmation of phenotypic value of quantity trait

The phenotypic values were set up according to the 44 Models (M-ss1-M-ss7, M-sd1-
M-sd6, M-cs1-M-cs8, M-cd1-M-cd6, and M-tc1-M-tc11) as described above. The genetic 
parameters in each model were set up such that the genetic effect of a1 was 2, a2 was -2, a3 was 
3, a4 was 0, a5 was 0, aa12 was 2.5, aa14 was 2.5, and aa25 was 2. The effects of a1, a2, a3, a4, 
and a5 were the additive effects of Qset1, Qset2, Qset3, Qset4, and Qset5, respectively, whereas aa12, 
aa14, and aa25 were the epistatic effect of Qset1 × Qset2, Qset1 × Qset4, and Qset2 × Qset5 interactions. 
The same heritability of ‘30%’ was set up in all 44 models.

Mapping procedures

ICIM in IciMapping Version 4.1 was used for QTL analysis of the simulated data. 
Analysis of 1000 permutations was performed to determine the logarithm of odds ratio threshold.

http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su1.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su2.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su3.pdf
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RESULTS

The ICIM mapping procedure was applied to analyze the QTL effects in each 
genetic model (M-ss1-M-ss7, M-sd1-M-sd6, M-cs1-M-cs8, M-cd1-M-cd6, M-ts1-M-ts6, and 
M-tc1-M-tc11) with 200 repetitions. Several parameters [i.e., average, accuracy, minimum, 
maximum, and coefficient of variation (CV)] were obtained by calculating and analyzing 200 
values from 200 rounds of simulation. Related statistical analysis results of the QTL mapping 
power, variation range of the QTL position, and numbers of false-positive QTLs are shown in 
Tables 1-5.

Table 1. Estimates of genetic parameters of models M-ss1 to M-ss7 under different sample size conditions (50, 
150, 250, 350, 450, 550, and 1000) based on 200 repetitions.

Sample size Effect TRUE value Average Accuracy Minimum Maximum CV RanQTL (cM) Power (%) False QTL 
50 individuals a1 2 2.07 0.967 1.26 3.27 0.186 83 94.5 2 

PVE (%) 30 31.67 0.944 15.42 56.84 0.012    
150 individuals a1 2 2.03 0.987 1.31 2.64 0.123 7 100 3 

PVE (%) 30 31.43 0.952 12.41 47.58 0.008    
250 individuals a1 2 2.01 0.994 1.48 2.62 0.094 4 100 3 

PVE (%) 30 30.88 0.971 17.13 43.9 0.006    
350 individuals a1 2 2.01 0.996 1.56 2.36 0.076 5 100 8 

PVE (%) 30 30.54 0.982 20.77 43.05 0.050    
450 individuals a1 2 2.06 0.971 1.67 5.81 0.150 4 100 17 

PVE (%) 30 32.31 0.923 20.28 232.28 0.010    
550 individuals a1 2 2.06 0.969 1.65 4.32 0.105 3 100 6 

PVE (%) 30 32.13 0.929 22.13 141 0.007    
1000 individuals a1 2 2.03 0.985 1.79 3.97 0.083 1 100 7 

PVE (%) 30 31.17 0.960 25.23 112.81 0.005    
 Accuracy is determined as (1 - |average value - true value| / |true value|), CV = coefficient of variation, RanQTL = 

range of QTL location; the same abbreviations are used in the remaining tables.

Table 2. Estimates of genetic parameters of models M-sd1 to M-sd6 under different marker density conditions 
based on 200 repetitions.

No. of markers r Effect TRUE value Average Accuracy Minimum Maximum CV RanQTL 
(cM) 

Power 
(%) 

False 
QTL 

10 markers 0.017 a1 2 2.07 0.967 1.47 2.59 0.09 7 100 9 
PVE (%) 30 32.16 0.928 17.63 47.1 0.006    

20 markers 0.035 a1 2 2.05 0.973 1.66 2.51 0.077 7 100 6 
PVE (%) 30 31.68 0.944 21.41 43.56 0.005    

30 markers 0.041 a1 2 2.03 0.985 1.49 2.47 0.088 5 100 6 
PVE (%) 30 30.94 0.969 19.37 41.81 0.006    

40 markers 0.056 a1 2 2.03 0.987 1.63 2.63 0.085 4 100 13 
PVE (%) 30 30.59 0.98 23.17 57.77 0.006    

50 markers 0.078 a1 2 2.03 0.984 1.31 2.51 0.088 7 100 6 
PVE (%) 30 31.27 0.958 13.39 46.56 0.006    

100 markers 0.14 a1 2 2.02 0.991 1.53 2.52 0.082 5 100 8 
PVE (%) 30 30.71 0.976 16.61 42.36 0.005    

 

QTL mapping power

Variation in the detection power in models M-ss1-M-ss7 is shown in Figure 1. The 
detection power of a1 in M-ss1 with a 50 line sample size was 94.5%. The detection power of 
a1 increased to 100% when the RIL sample size was increased from 150 to 1000 in the M-ss1-
M-ss7 models (Table 1). A sample size of 150 RILs was sufficient for the single additive QTL 
genetic model. In models M-sd1-M-sd6, the detection power was 100% when the marker 
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Table 3. Estimates of genetic parameters of M-cs1 to M-cs8 under different sample size conditions (50, 150, 
250, 350, 450, 550, and 1000) based on 200 repetitions.

Sample size Effect TRUE value Average Accuracy Minimum Maximum CV RanQTL 
(cM) 

Power 
(%) 

False 
QTL 

50 individuals a1 2 4.52 0.205 3.80 5.42 0.105 42 7.0 0 
a2 -2 -4.54 0.213 -5.95 -3.61 0.129 55 13.0 0 
a3 3 4.44 0.521 3.22 5.75 0.129 63 12.0 0 

aa12 2.5 6.48 0.373 4.98 7.51 0.206  1.5 2 
150 individuals a1 2 2.83 0.586 1.96 3.85 0.145 60 65.0 0 

a2 -2 -2.76 0.618 -4.30 -1.81 0.142 70 74.5 0 
a3 3 3.04 0.988 1.82 4.92 0.167 40 93.5 2 

aa12 2.5 3.62 0.552 2.88 4.62 0.109  17.0 0 
250 individuals a1 2 2.35 0.813 1.66 3.47 0.179 40 85.5 2 

a2 -2 -2.23 0.884 -9.99 -1.57 0.348 27 71.0 8 
a3 3 2.88 0.960 1.76 4.22 0.160 16 99.5 2 

aa12 2.5 2.89 0.846 2.19 4.41 0.133  65.5 0 
350 individuals a1 2 2.14 0.931 1.43 3.33 0.166 12 93.5 1 

a2 -2 -2.16 0.921 -4.78 -1.36 0.195 26 97.5 2 
a3 3 3.17 0.942 1.75 4.05 0.128 9 100.0 2 

aa12 2.5 2.69 0.926 1.86 3.84 0.140  85.0 7 
450 individuals a1 2 2.12 0.940 1.18 3.13 0.163 19 98.0 2 

a2 -2 -2.00 1.000 -3.45 -1.19 0.173 13 99.5 2 
a3 3 3.11 0.964 2.33 4.87 0.121 8 100.0 5 

aa12 2.5 2.58 0.967 1.73 3.45 0.143  95.0 1 
550 individuals a1 2 2.01 0.997 1.24 2.86 0.166 16 100.0 3 

a2 -2 -2.04 0.979 -2.90 -1.24 0.163 14 99.5 4 
a3 3 3.15 0.948 2.29 4.22 0.106 2 100.0 6 

aa12 2.5 2.62 0.953 1.76 3.65 0.127  99.0 0 
750 individuals a1 2 2.09 0.957 1.18 2.94 0.145 16 100.0 1 

a2 -2 -2.05 0.973 -2.77 -1.46 0.130 23 100.0 0 
a3 3 3.03 0.990 2.35 3.69 0.090 16 100.0 0 

aa12 2.5 2.51 0.997 1.73 3.22 0.113  100.0 1 
1000 individuals a1 2 2.09 0.954 1.23 2.85 0.129 8 100.0 5 

a2 -2 -2.05 0.977 -5.10 -1.51 0.158 20 100.0 1 
a3 3 3.08 0.975 2.24 3.79 0.089 12 98.5 9 

aa12 2.5 2.58 0.970 1.79 3.37 0.094  100.0 1 
 

Table 4. Estimates of genetic parameters of M-cd1 to M-cd6 under different marker density conditions based 
on 200 repetitions.

Marker density r Effect TRUE value Average Accuracy Minimum Maximum CV RanQTL (cM) Power (%) False QTL 
10 markers 0.14 a1 2 2.29 0.855 1.39 3.51 0.199 51 96.5 2 

a2 -2 -2.35 0.826 -3.71 -1.34 0.199 23 98.0 2 
a3 3 3.09 0.970 1.50 4.14 0.142 13 100.0 5 

aa12 2.5 2.81 0.878 2.09 3.99 0.142  95.5 0 
20 markers 0.078 a1 2 2.26 0.870 1.39 3.13 0.174 18 97.5 3 

a2 -2 -2.36 0.818 -3.54 -1.51 0.180 86 98.0 1 
a3 3 3.04 0.988 2.09 4.23 0.143 8 100.0 2 

aa12 2.5 2.75 0.898 1.95 3.85 0.137  97.0 0 
30 markers 0.056 a1 2 2.31 0.843 1.42 3.47 0.169 15 99.0 3 

a2 -2 -2.20 0.900 -3.87 -1.52 0.176 55 97.0 4 
a3 3 3.06 0.978 1.73 4.16 0.143 6 100.0 4 

aa12 2.5 2.72 0.912 1.95 3.99 0.133  94.0 2 
40 markers 0.041 a1 2 2.07 0.964 1.41 3.25 0.166 37 87.0 2 

a2 -2 -2.37 0.817 -4.52 -1.43 0.184 17 98.5 4 
a3 3 3.17 0.944 2.08 4.79 0.133 10 100.0 2 

aa12 2.5 2.71 0.915 1.93 3.85 0.139  92.0 0 
50 markers 0.035 a1 2 1.98 0.992 1.44 3.90 0.177 31 85.5 9 

a2 -2 -2.16 0.921 -5.07 -1.40 0.199 53 92.0 3 
a3 3 3.15 0.948 2.15 4.73 0.119 17 100.0 6 

aa12 2.5 2.66 0.937 1.99 3.52 0.122  89.0 1 
100 markers 0.017 a1 2 2.08 0.960 1.43 5.12 0.212 35 92.5 6 

a2 -2 -2.17 0.913 -5.89 -1.47 0.201 40 93.5 5 
a3 3 2.96 0.987 2.07 5.95 0.158 14 100.0 9 

aa12 2.5 2.46 0.983 1.86 3.34 0.119  87.0 1 
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densities were increased from 10 to 100 markers on chr1 (Table 2). Therefore, marker density 
appears to have no influence on single additive QTL genetic effect detection. In models M-cs1-
M-cs8, the power to detect all genetic effects of a1, a2, a3, and aa12 exhibited a continuously 
increasing trend when the RIL sample size was increased from 50 to 1000 (Figure 2). When 
the RIL sample size was 50 in M-cs1, the detection powers of a1, a2, a3, an aa12 were 7, 13, 
12, and 1.5%, respectively. The detection powers of a1, a2, a3, and aa12 increased to more 
than 95% when the sample size was increased to more than 450 (Table 3). Therefore, the RIL 
sample size should be at least 450 to accurately estimate all genetic effects in Model II. In 
models M-cd1-M-cd6, all detection powers of a1, a2, a3, and aa12 were greater than 85% as 
marker densities increased from 10 to 100 markers on each of the three chromosomes (Table 
4). The highest detection power of a1 was 99% when the marker density was 30 markers, the 

Table 5. Estimates of genetic parameters of M-tc1 to M-tc11 under different sample size conditions (50, 150, 
250, 350, 450, 550, 650, 750, 850, 1000, and 1500) based on 200 repetitions.

Sample size Effect TRUE value Average Accuracy Minimum Maximum CV RanQTL (cM) Power (%) False QTL 
50 individuals a1 2 4.16 0.073 4.16 4.16 - 0 0.5 15A+2AA 

a2 -2 -3.54 0.231 -3.54 -3.54 - 0 0.5  
aa13 2.5 5.28 0.101 4.23 6.99 0.156  4.0  
aa24 2 4.84 0.297 4.84 4.84 -  0.5  

150 individuals a1 2 2.11 0.948 2.11 2.11 - 0 0.5 3A 
a2 -2 -2.26 0.871 -2.60 -2.00 0.084 17 5.5  

aa13 2.5 3.45 0.618 2.69 4.96 0.117  43.5  
aa24 2 3.30 0.350 2.88 3.62 0.080  3.5  

250 individuals a1 2 2.70 0.651 1.75 3.83 0.263 2 6.5 6A +1AA 
a2 -2 -2.32 0.839 -3.28 -1.62 0.250 36 5.0  

aa13 2.5 2.88 0.850 2.28 3.86 0.118  84.0  
aa24 2 2.71 0.643 2.26 3.15 0.083  35.5  

350 individuals a1 2 2.39 0.805 1.37 3.57 0.269 27 34.0 14A+2AA 
a2 -2 -2.38 0.808 -3.55 -1.48 0.194 9 20.5  

aa13 2.5 2.62 0.951 1.88 3.38 0.134  96.5  
aa24 2 2.44 0.782 1.86 3.33 0.116  66.5  

450 individuals a1 2 2.23 0.886 1.19 3.36 0.235 51 44.5 14A+1AA 
a2 -2 -2.34 0.830 -4.20 -1.30 0.261 29 46.5  

aa13 2.5 2.87 0.853 2.00 3.82 0.107  100.0  
aa24 2 2.43 0.784 1.79 3.56 0.144  95.0  

550 individuals a1 2 2.34 0.829 1.13 3.23 0.216 30 34.0 11A+2AA 
a2 -2 -2.15 0.925 -2.88 -1.16 0.220 11 30.0  

aa13 2.5 2.86 0.855 2.12 3.57 0.103  100.0  
aa24 2 2.24 0.881 1.61 2.96 0.128  98.0  

650 individuals a1 2 2.08 0.959 1.09 3.19 0.192 6 48.5 11A 
a2 -2 -2.25 0.873 -3.02 -1.13 0.157 37 48.5  

aa13 2.5 2.65 0.938 2.00 3.35 0.098  100.0  
aa24 2 2.23 0.886 1.61 3.02 0.127  99.5  

750 individuals a1 2 2.41 0.797 1.47 3.27 0.132 7 98.0 19A 
a2 -2 -2.39 0.805 -3.07 -1.32 0.121 4 98.0  

aa13 2.5 2.51 0.994 1.79 3.16 0.098  100.0  
aa24 2 1.97 0.984 1.36 2.65 0.127  100.0  

850 individuals a1 2 2.12 0.942 1.28 2.90 0.146 14 93.0 9A+1AA 
a2 -2 -2.32 0.841 -3.17 -1.12 0.122 4 92.5  

aa13 2.5 2.76 0.895 2.21 3.51 0.092  100.0  
aa24 2 2.21 0.897 1.43 3.01 0.112  100.0  

1000 individuals a1 2 2.19 0.907 1.19 2.84 0.116 5 96.5 9A 
a2 -2 -2.17 0.913 -2.87 -1.45 0.115 6 96.5  

aa13 2.5 2.67 0.930 2.08 3.42 0.085  100.0  
aa24 2 2.16 0.918 1.53 2.83 0.103  100.0  

1500 individuals a1 2 1.90 0.951 1.24 2.36 0.105 4 99.5 8A 
a2 -2 -2.02 0.988 -2.75 -1.55 0.105 4 99.5  

aa13 2.5 2.59 0.963 2.15 3.10 0.070  100.0  
aa24 2 2.09 0.955 1.62 2.77 0.087  100.0  

 The recombination fraction between two adjacent markers is 0.056. Accuracy is determined as (1 - |average value 
- true value| / |true value|), CV = coefficient of variation, A = additive QTL, AA = epistatic. QTL pair, RanQTL = 
range of QTL location.
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highest detection power of a2 was 98.5% when the marker density was 40 markers, and the 
highest detection power of aa12 was 97% when the marker density was 20 markers on the 
group. The detection power of a3 was 100% in models M-cd1-M-cd6 with different marker 
densities (Table 4 and Figure 3). Overall, to accurately estimate all genetic effects in Model 
II, the optimum marker density is approximately 20 markers when the recombination fraction 
between two adjacent markers is 0.056. In models M-tc1-M-tc11, Qset1 and Qset2 represented 
two adjacent QTLs located on the same linkage group with the same additive effects; however, 
one effect was positive while the other was negative. When the RIL sample size was 50 in 
M-tc1, the detection powers of a1, a2, aa14, and aa25 were 0.5, 0.5, 4, and 0.5%, respectively. 
When the RIL sample size was more than 450, the detection powers of aa14 and aa25 both 
increased to more than 95%; however, the detection powers of a1 and a2 were only 44.5 and 
46.5%, respectively. When the sample size was increased to more than 750, the detection 
power of all genetic effects of a1, a2, aa14, and aa25 increased to more than 90% (Table 5 and 
Figure 4). We concluded that the RIL sample size should be at least 750 to accurately estimate 
all genetic effects in Model III. If only the aa14 and aa25 effects must be estimated, a sample 
size of 450 is sufficient.

Figure 1. Variation tendency of detecting power of a1 in M-ss1-M-ss7.

Figure 2. Variation tendency of detecting power of genetic effects in M-cs1-M-cs8.
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Coincidence analysis between the actual value and preset value

The genetic effects, accuracy, and CV parameters of the same QTL in 200 rounds 
of simulation fluctuated to some degree. In models M-ss1-M-ss7, there was no significant 
difference in the accuracy of a1 among the seven models. In models M-cs1-M-cs8, the 
accuracy of all genetic effects of a1, a2, a3, and aa12 in M-cs1 to M-cs8 exhibited a continuously 
increasing trend when the RIL sample sizes were increased from 50 to 1000 (Figure S1). 
When the RIL sample size in M-cs1 was 50, the accuracies of a1, a2, a3, and aa12 were only 
0.205, 0.213, 0.521, and 0.373, respectively. The accuracies of a1, a2, a3, and aa12 increased to 
more than 90% when the sample size increased to more than 350. The CVs of a1, a2, a3, and 
aa12 became stable and decreased slowly when the sample size was increased from 350 to 1000 
(Figure S2). There was no significant difference in the accuracy of a1 among models M-sd1-
M-sd6 (Table 2). The accuracy of all genetic effects of a1, a2, a3, and aa12 were over 80% in 
models M-cd1 to M-cd6. It can be infer there was no significant difference in the accuracy of 
all genetic effects of a1, a2, a3, and aa12 among models M-cd1-M-cd6 (Figure S3). The lowest 
variation ranges of the a1, a2, and a3 actual values were 1.74, 2.03, and 2.14, respectively, in 

Figure 3. Variation tendency of detecting power of genetic effects in M-cd1-M-cd6.

Figure 4. Variation tendency of detecting power of genetic effects in M-tc1-M-tc11.

http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su4.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su5.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su6.pdf
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M-cd2 when the marker density was 20 markers on the linkage group. The lowest variation 
range in the aa12 actual value was 1.47 in M-cd6. The variation range fluctuations of the a1, 
a2, and a3 values gradually increased after increasing the markers to more than 20 on the 
simulated linkage group (Figure S4). In models M-tc1-M-tc11, the accuracy of all genetic 
effects of a1, a2, a3, and aa12 exhibited a continuously increasing trend when the RIL sample 
sizes were increased from 50 to 1500 (Figure S5). When the RIL sample size was 50 in 
M-tc1, the accuracies of a1, a2, aa13, and aa24 were 0.073, 0.231, 0.101, and 0.297, respectively. 
When the sample size was increased to more than 750, the accuracies of a1, a2, aa13, and aa24 
increased to more than 90%. The CVs of a1, a2, aa13, and aa24 became stable and decreased 
slowly when the sample size was increased from 750 to 1500 (Figure S6). The false-positive 
QTLs detected in the different models resulted in irregular phenomena.

In summary, for Model I, a sample size of 150 was sufficient for detecting genetic 
effects; additionally, different marker densities had no significant influence on the accurate 
estimation of genetic effects. For model II, the sample size should be approximately 450 to 
accurately estimate all genetic effects; overall, for the parameters of detection power, accuracy, 
and variation ranges of all genetic effects, the optimum marker density was approximately 20 
markers when the recombination fraction between two adjacent markers was 0.056 in M-cd1-
M-cd6. For model III, the sample size should be at least 750 to accurately estimate all genetic 
effects. The different marker densities did not significantly influence the accurate estimation 
of genetic effects with simple additive models, but influenced QTL mapping accuracy for the 
additive and epistatic models. The optimum marker density for obtaining a relatively high 
QTL mapping accuracy was approximately 20 markers when the recombination fraction 
between two adjacent markers was 0.056 in the additive and epistatic models. Sample sizes 
have a large influence on QTL mapping; for Model I, a sample size of 150 was sufficient, 
while for model III, the sample size was increased to 750. In practical QTL mapping, the 
genetic model of mapping population is unknown; a larger sample size is better because more 
recombination events occur. Developing a mapping population with large sample size is time-
consuming and costly, particularly for RIL populations. A sample size of 150 was sufficient 
for detecting simple additive QTLs without concerning epistatic effects and combined effects 
between two adjacent QTLs with short genetic distance. Our results suggest that a sample 
size of approximately 450 is needed to detect QTLs with genetic models of additive and 
epistatic effects. The sample size must be increased to approximately 750 to detect QTLs with 
additive, epistatic, and combined effects between two adjacent QTLs. The sample size should 
be increased continually to more than 750 if the genetic models of the data set become more 
complicated than Model III.

DISCUSSION

In practical QTL mapping, the heritability of the target QTL is fixed in a specific 
segregated population because heritability is a feature that belongs to the specific quantitative 
trait itself. Although heritability has a large influence on QTL mapping (Su et al., 2015), 
heritability determined by the specific quantitative trait itself cannot be altered; thus, researchers 
cannot increase QTL mapping accuracy by increasing heritability. The marker density of the 
genetic linkage map is currently thought to be one of most important factors affecting QTL 
mapping accuracy. The results of this study and those of previous studies (Xiong and Guo, 
1997; Piepho, 2000) showed that maintaining a specific marker density was necessary for 

http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su7.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su8.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15049153-su9.pdf
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further QTL analysis, although the QTL mapping accuracy did not increase after marker 
density reached a particular limit. Darvasi et al. (1993) found no significant differences in the 
detection power, confidence interval, and estimated genetic effects after the distance between 
two adjacent markers was decreased from 20 to 10 cM. Similarly, Piepho (2000) showed that 
there were no significant differences in the detection power and accuracy of estimating the 
genetic effects when the distance between two adjacent markers was increased to more than 10 
cM. This may be because recombination events could not be increased by increasing marker 
densities, and no new recombination information could be supplied for the QTL analysis; 
thus, QTL mapping accuracy would not be increased. The results obtained in this study show 
some agreement and disagreement with those of previous studies. For simple additive models, 
our results and those of some previous studies indicated that different marker densities do not 
significantly influence the accurate estimation of genetic effects; however, for additive and 
epistatic models, there was an influence on QTL mapping accuracy. The optimum marker 
density to achieve a relatively high QTL mapping accuracy was found to be approximately 
20 markers when the recombination fraction between two adjacent markers is 0.056 in the 
additive and epistatic models.

Sample size is one of the most important factors influencing QTL mapping. Many 
studies of the effect of sample size on QTL mapping have been conducted, but most of 
these studies only focused on simple additive effects without evaluating epistatic effects. 
Additionally, QTL mapping for agronomic traits revealed that QTLs controlling the same 
phenotype are often closely linked (Monna et al., 2002; Miyamoto et al., 2004; Ashikari et 
al., 2005; Thomson et al., 2006; Asano et al., 2011; Shen et al., 2011). Two linked QTLs 
that act in opposite directions are likely difficult to detect in a population with relatively 
few recombination sites, such as model IV in this study. In some species (i.e., rice), many 
QTLs co-localize in specific genomic regions and form QTL clusters (Yonemaru et al., 2010). 
Therefore, it is necessary to increase the sample size of the segregated population to accurately 
estimate all genetic effects. Recombination events can be increased by increasing the sample 
size of the segregated population. Few studies have evaluated additive and epistatic models 
with combined effects between two adjacent QTLs located on same chromosomes with short 
genetic distance. This study focused on QTL mapping accuracy under different genetic models 
from simple to complex. The results showed that the optimum sample size differed between 
genetic models; as the genetic model became more complicated, the sample size was required 
to be increased. For model I in this study, a sample size of 150 was sufficient for conducting 
QTL analysis. In Models II and III, the detection power and QTL mapping accuracy can be 
aided by increasing the sample sizes to 450 and 750, respectively. The sample size should be 
increased to more than 750 if the genetic models of data set become more complicated than 
Model III. Thus, to increase the detection power, recombination events should be increased by 
enlarging the sample size or efficiently applying limited recombination events.

CONCLUSIONS

Different marker densities had no significant influence on the accurate estimation of 
the genetic effects with simple additive models, but did influence QTL mapping accuracy to 
some degree with additive and epistatic models. The optimum marker density that may lead to 
a relatively high QTL mapping accuracy is approximately 20 markers when the recombination 
fraction between two adjacent markers is 0.056 in the additive and epistatic models.
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The sample size should be increased as the numbers of different genetic effects increase 
to accurately estimate all genetic effects of the model. Sample sizes have a large influence on 
QTL mapping. In practical QTL mapping, the genetic model of the mapping population is 
unknown, and a larger sample size is preferential. A sample size of 150 was sufficient for 
detecting simple additive QTLs. A sample size of approximately 450 should be used to detect 
QTLs with genetic models of additive and epistatic effects. The sample size must be increased 
to approximately 750 to detect QTLs with additive, epistatic, and combined effects between 
two adjacent QTLs. The sample size should be increased continuously to more than 750 if the 
genetic models of the data set become more complicated than Model III.
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Figure S3. Variation tendency of accuracy of genetic effects in M-cd1-M-cd6. 

Figure S4. Variation tendency of accuracy of genetic effects in M-tc1-M-tc11. 

Figure S5. Variation tendency of CV of different genetic effects in M-tc1-M-tc11. 

Figure S6. Variation tendency of CV of different genetic effects in M-tc1 to M-tc11 (A total three linkage groups with 
30 markers each were simulated. Two additive QTLs located on one linkage group plus two pairs of epistetic QTLs 
were simulated. Sample sizes of RILs were all 350. The x axis denotes sample sizes while y axis denotes CV).
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