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ABSTRACT. The additive main effects and multiplicative interaction 
(AMMI) and the genotype main effects and genotype x environment 
interaction (GGE) models stand out among the linear-bilinear models 
used in genotype x environment interaction studies. Despite the 
advantages of their use to describe genotype x environment (AMMI) 
or genotype and genotype x environment (GGE) interactions, these 
methods have known limitations that are inherent to fixed effects models, 
including difficulty in treating variance heterogeneity and missing data. 
Traditional biplots include no measure of uncertainty regarding the 
principal components. The present study aimed to apply the Bayesian 
approach to GGE biplot models and assess the implications for 
selecting stable and adapted genotypes. Our results demonstrated that 
the Bayesian approach applied to GGE models with non-informative 
priors was consistent with the traditional GGE biplot analysis, although 
the credible region incorporated into the biplot enabled distinguishing, 
based on probability, the performance of genotypes, and their 
relationships with the environments in the biplot. Those regions also 
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enabled the identification of groups of genotypes and environments 
with similar effects in terms of adaptability and stability. The relative 
position of genotypes and environments in biplots is highly affected by 
the experimental accuracy. Thus, incorporation of uncertainty in biplots 
is a key tool for breeders to make decisions regarding stability selection 
and adaptability and the definition of mega-environments.

Key words: Additive and multiplicative models; Mega-environments; 
Biplot; Von Mises-Fisher

INTRODUCTION

Linear-bilinear models gained prominence in the context of plant breeding and 
evaluation of data from multi-environment trials (METs) because they offer a range of 
possibilities for the analysis of genotype x environment interactions (GE). Among these 
models, the additive main effects and multiplicative interaction (AMMI) model and the 
genotype main effects and genotype x environment interaction (GGE) model, which is also 
known as site regression (SERG), are widely applied in genetic breeding programs and 
agronomic trials in general. The advantages and disadvantages of application of these methods 
have been extensively discussed in literature (Smith et al., 2001; Gauch, 2006; Yan and Tinker, 
2006; Yan et al., 2007; Gauch et al., 2008; Balestre et al., 2009).

An interesting aspect in the study of these models is the graphical representation of 
the pattern of GE or GGE interaction. Such representation was originally proposed by Gabriel 
(1971) and was termed “biplot analysis” because it only considers the first two terms of the 
multiplicative model. Biplot analysis is a key step in the application of multiplicative models 
and is being widely and systematically used to identify patterns in MET datasets, for studying 
adaptability and genotypic stability, for defining mega-environments, and for other purposes 
regarding the evaluation of cultivars (Yan et al., 2000; Gauch, 2006). The GGE model was 
proposed by Yan et al. (2000) and incorporates genotype effects into the GE interaction effects 
of the AMMI model. It is therefore termed the GGE biplot. In this model, the overall mean 
and the environment effects are additive, and the genotypic effect is confounded with the 
multiplicative interaction component. Despite the advantages reported in the literature, like 
other multiplicative models, GGE has serious limitations, including difficulty in treating 
unbalanced or missing data and variance heterogeneity. In addition, traditional biplot analysis 
is merely a descriptive procedure, i.e., it includes no measure of the uncertainty regarding 
the genotypic and environmental scores plotted (Yan and Tinker, 2006; Yang et al., 2009). 
Furthermore, frequentist inference procedures in biplot analysis have been subject to criticism, 
whether for the assumptions regarding the distribution of the individual interaction scores 
required in parametric methods or for using problematic resampling procedures of non-
parametric methods (Yang et al., 2009; Yan et al., 2010; Hu and Yang, 2013a; Antonio de 
Oliveira et al., 2015).

Alternative models based on the mixed models, including the Factor-Analytic model 
proposed by Piepho (1997) and Smith et al. (2001) and SERG suggested by Burgueño et al. 
(2008), have known advantages relative to the fixed effects models because they have more 
flexibility in modeling the missing data and in treating the variance heterogeneity. However, 



3Bayesian GGE models applied to maize trials

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (2): gmr.15028612

even for these models, it is unclear how parametric confidence regions may be incorporated 
into the biplots (Crossa et al., 2011). These models usually consider the genotypes and 
interaction effects as random, whereas the environment effect is fixed. The assumption that 
genotype effects are random is advocated by several researchers and is a point of disagreement 
that has widely been discussed in the literature (Piepho, 1997; Smith et al., 2001; Crossa et al., 
2006; Kelly et al., 2007).

The methods listed above are based on the frequentist approach of analysis of variance 
or mixed models. An alternative to analyze MET data was proposed by Viele and Srinivasan 
(2000), who adopted a Bayesian approach for the AMMI model. They demonstrated how 
to use Markov Chain Monte Carlo (MCMC) methods for performing the sampling of linear 
and bilinear model parameters, especially those that describe the GE interaction, whose 
support for conditional posterior distributions is not trivial. Subsequently, theoretical and 
practical questions regarding this approach were analyzed by Liu (2001), who derived a set 
of conditional posterior distributions, thus reducing the computational cost of the model and 
further stabilizing the algorithms. These studies were recently resumed and further developed 
by Crossa et al. (2011), Antonio de Oliveira et al. (2015), and Josse et al. (2014), who 
incorporated credible regions into the biplots, and also by Perez-Elizalde et al. (2011), who 
demonstrated how historical experimental data may be used in the inference process.

The Bayesian methodology is a natural method of incorporating uncertainty into 
GGE graphical representations that also facilitates treating unbalanced datasets and variance 
heterogeneity. It enables the use of data, other than the sampling data, including kinship matrices 
and historical experimental data. Another advantage of this method is that it avoids choosing 
which parameters should be treated as fixed or random because all unknown quantities in the 
Bayesian context are considered uncertain, and their realizations are probabilistic and random.

The Bayesian approach applied to the AMMI model can be generalized, i.e., it may 
be extended to other linear-bilinear models, including the GGE, genotype regression (GREG), 
and the complete multiplicative model (COMM). For such purposes, some parameters must 
be fixed to zero and some constraints in the models must be relaxed, as noted by Liu (2001), 
Crossa et al. (2011), and Perez-Elizalde et al. (2011). However, applications of the Bayesian 
method in the literature have been limited to the AMMI model (Viele and Srinivasan, 2000; 
Crossa et al., 2011; Perez-Elizalde et al., 2011; Josse et al., 2014; Antonio de Oliveira et al., 
2015) and the Factor-Analytic model (de los Campos and Gianola, 2007). Thus, it would be 
interesting to explore the advantages of Bayesian analysis for GGE biplot models and to assess 
its implications for the interpretation of biplots.

In this context, the present study aimed to apply the Bayesian approach to the GGE 
model and investigated the various aspects related to this analysis, namely the iterative 
sampling process, the construction of credible regions for the genotypic and environmental 
scores, and the possible interpretations of these regions.

MATERIAL AND METHODS

The data used in the present study was from 55 genotypes tested under nine different 
environments during the 2005-2006 agricultural years. The experiment was conducted in a 
completely randomized block design, with three replicates. The plot consisted of two 3-m-long 
rows with a population density of 55,000 plants per hectare after thinning. The yield of husked 
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ears was the variable evaluated, which was expressed as t/ha. These data were the same as 
those used by Antonio de Oliveira et al. (2015).

Bayesian GGE model

The classical GGE biplot model described by Yan et al. (2000) is used to describe a 
dataset arranged in a double-entry matrix, wherein the plot data and designs are not explicitly 
incorporated into the model. We modified this model, as described by Crossa et al. (2011) and 
Antonio de Oliveira et al. (2015), for plotting data in the present study. The proposed GGE 
model was defined by the following equation:

where, y represents the vector that contains the phenotypic responses. The βlx1 vector 
contains the effects related to environments and blocks (confounded), and l(l = c∙b) is 
the number of replicates, where c and b are the numbers of environments and blocks, 
respectively. The terms X1, X2, and Z represent the incidence matrices associated with β, 
γk, and ak. The X2 matrix represents the sites, and in this model, its aim was to allocate the 
interaction effect to the plot data. The term lk denotes the k-th singular value, for k = 1,…,p, 
and p = min(r-1, c) is the rank of the genotypes and genotype x environment interaction 
GGE(rxc) matrix. The terms lk, gk, and ak were obtained via singular value decomposition 
(SVD) of the GGE matrix.

Furthermore, this model included a constraint that lk ≥ lk+1 ≥ 0, i.e., the values should 
be positive and in order of descending magnitude, and also an orthonormality constraint on 
the singular vectors ak and gk. The Ɛnx1 vector contains the effects of experimental errors, with 
Ɛ ~ Nn(0, s2I).

Only the first two principal axes were considered in the biplot for the graphical 
evaluation of genotype adaptability and stability, thus reducing model (1) to the known 
GGE (or GGE2) biplot, as proposed by Yan et al. (2000). In this analytical procedure, the 
first principal component was related to the genotypic adaptability, whereas the second was 
concerned with the stability (GE interaction).

The conditional distribution of the data has a multivariate normal density distribution, 
i.e., y|b, l, a, g, se

2 ~ N(Ɵ, Inse
2), where, In denotes the identity matrix of order n, 

2
1 2

1

( )
p

k k k e
k

X diag Z X andθ b l a γ s
=

= +∑  denotes the residual variance.

Prior distributions and conditional posterior distributions of the GGE model 
parameters

The prior distribution of the environment effects plus the block effects is non-
informative, i.e., Jeffreys prior, p(b) = 1/s=k (constant), is considered. A truncated normal 
distribution denoted by 2 2, ( , )

k k k kk Nl l l ll µ s µ s+
  and obtained by constraining positive values 

1 21
 ( )  k k kk
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
  β Zα X γ εy  (Equation 1)
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of the normal distribution to values that meet the condition 1 0,k kl l +≥ >  considering 
2 ,

kl
s →∞ and 

kl
µ  = 0, was assigned to kl .

Uniform spherical distributions were assigned to the singular vectors γk and αk (Viele 
and Srinivasan, 2000). Lastly, a scaled inverse chi-squared distribution was assigned to the 
residual variance. The known Jeffreys prior (Jeffreys, 1961), denoted by 21/ ,es  was obtained 
when considering the scale parameters and zero degrees of freedom. These prior distributions 
were the same as those used by Antonio de Oliveira et al. (2015) for the Bayesian AMMI. The 
full conditional posterior distributions of the model parameters (1) were obtained from the 
joint posterior distribution. The likelihood function was expressed as

The joint posterior distribution was obtained by applying the Bayes’ theorem, which 
relates the prior parameter data with the likelihood function and was expressed as

Where 2( , , , )eb a γ sΦ =  and min( 1, )p g e= − .
Equation 3 may be rewritten using the prior data as follows:

The full conditional posterior distributions for GGE model parameters were derived 
from Equation 4 as follows:

with 2
1
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=

= −∑  and 2
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Thus,

with 2... 0i pl l l≥ ≥ ≥ .
Similar to the analysis by Antonio de Oliveira et al. (2015) and considering the GGE 

model, the full conditional posterior distributions for the singular vectors were denoted by

With 2( )kdiag X ZγΛ =  and 2( ) Z
t

k k k
k k

E diag Xl γ a
≠

=∑

Thus, αk has a distribution that is proportional to the Von Mises-Fisher distribution, 

( ...) ,
kkp VMF k aa µ   , with directional mean and concentration parameter proportional 

to 2
k

e

k l
s

=  and 1( ),
k

t y Xaµ b= Λ −  respectively.

Similarly, γk has a full conditional posterior distribution that is proportional to the 

Von Mises-Fisher distribution ( ...) ,
kkp VMF k γγ µ   , with 1( )
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Samples of singular vectors and the difference between GGE and Bayesian AMMI

The samples for the parameter inference process were collected using the Gibbs 
sampler because all the full conditional posterior distributions were known and enabled direct 
sampling. The steps for the iterative process were similar to those used by Antonio de Oliveira 
et al. (2015), although, herein, the main effect of genotypes confounded with the interaction 
required no update, and environmental singular vectors had no orthogonality constraint on the 
vector of ones (1ex1). A degree of freedom was gained over that with the AMMI model because 
the GE matrix rank was min (g - 1, e - 1), and the GGE matrix rank was min (g -1, e).

Given the orthonormality constraint, the sampling of singular vectors was 
performed in the corrected space, and the vectors generated from the Von Mises-Fisher 
distributions using an auxiliary variable were represented in the correct space through a 
linear transformation (Viele and Srinivasan, 2000; Antonio de Oliveira et al., 2015). The 
singular vector ka  should be orthogonal to the other p - 1 vectors (A )

kk aa −  and the vector 
( )11gx . Thus, there was an Hk matrix whose columns formed a set of orthonormal vectors 
that were orthogonal to the vector ( )11gx  and 

k
A a− . The auxiliary variable *

ka  was used to 
sample the coordinates of vectors in the corrected space (free of the orthogonality constraint). 
The linear transformation, * t

k k kHa a= , as proposed by Liu (2001), is a bijective function; 
therefore, the random vectors may be transformed into Rn-s, one by one, in the same vector 
in Rn (for n = g or n = e), where, S represents a subspace that contains the singular vectors 
that are orthogonal to the generated vector. k k k

t t
k
tα H H α   is required to obtain the full 

conditional posterior distribution of *
ka , which is given by

The equation below was obtained when conveniently multiplying and dividing the 
part of Equation 14 between the curly brackets by 

k

t t
k ak k kc H H aµ µ= :

with 1
k k

t
k kc Ha aµ µ−= . Thus, *

ka  had a Von Mises-Fisher distribution, which was denoted by 
( , , )

kkVFM r s k aµ−  , on the unit sphere Sr-s and was expressed as follows:

Performing the inverse transformation given by *
k k kHa a=  was sufficient to obtain 

the genotype singular vector in the correct subspace.
*
kγ  was obtained through calculations similar to those performed for ka  such that 

* t
k k kRγ γ= . Thus, *

kγ had a Von Mises-Fisher distribution in the corrected subspace, c - s, i.e., 
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k
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( , , )
kkVFM r s k aµ−   was given by

 * *
2( | )

k

tk k
k k

e

dp exp 



 

  
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(Equation 17)

where, 1
k k

t
k kd Rγ γµ µ−= , 

k k

t t
k k kd R Rγ γµ µ= , and the Rk matrix had columns that were 

orthonormal and orthogonal to the 
k

D γ−  vectors. The inverse transformation was obtained 
by *

k k kRγ γ= .
As already mentioned above, for environmental singular vectors, there was no 

orthogonality constraint regarding the vector 1(1 )ex , i.e., each kγ  was orthogonal to p - 1 
vectors in Re, whereas each ka  was orthogonal to p in Rg. The latter assumption is crucial for 
the Bayesian GGE approach.

The convergence of Markov chains obtained using the Gibbs sampler was monitored 
using the criteria of Raftery and Lewis (1992) and Gelman and Rubin (1992). The residual 
variance and singular value estimates were obtained using the posterior means for the MCMC 
sample generated. The same did not occur for the singular vectors in which posterior means 
did not satisfy the unit norm and orthogonality constraints, thus requiring transformation into 
matrices formed by the means of coordinates of the resulting vectors obtained by the Markov 
chains. The method proposed by Liu (2001) was used for that purpose.

The highest posterior density (HPD) credible regions for the model parameters were 
obtained using the method proposed by Chen and Shao (1999) and were implemented using 
the statistical package Bayesian Output Analysis (BOA) available in the R software package 
(R Development Core Team, 2013).

Credible regions for the scores 1/2 1/2
1 1 2 2( , )i il a l a  and 1/2 1/2

1 1 2 2( , )j jl γ l γ , with 
{1,...,55}i =  and {1, , 9}j = … , were incorporated into the biplot using the Euclidean 

distances method, as reported in Ooms (2009) and Antonio de Oliveira et al. (2015). As 
previously reported, the first two terms in the bilinear model (1) were considered for graphic 
evaluation of the genotype adaptability and stability. The interpretations were performed by 
observing the overlap between the credible regions of the genotypic and environmental scores. 
Genotypes and environments whose regions for the biplot scores intersected each other were 
considered similar or homogeneous groups.

RESULTS

GGE in the frequentist context

The frequentist GGE analysis indicated that the first of the eight principal components 
(PCs) obtained in this study, PC1, accounted for 45.54% of the G+GE effects, and the second 
component, PC2, accounted for 12.44% of that effect. Thus, PC1 and PC2 together explained 
57.98% of the total G+GE effect. These results indicated that the first two principal components 
could explain a large part of the G+GE effect. However, this percentage might not be sufficient 
to explain the interaction pattern (Cullis et al., 2014; Smith et al., 2015).
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The GGE2 biplot, which corresponded to the GGE biplot analysis shown in Figure 
1, was used for the graphical representation of the pattern expressed by the first two PCs. A 
polygon was designed based on the genotypes located in the farthest points of Figure 1. The 
genotypes G35, G19, G29, G50, G47, G27, G2, and G6 were the vertices of this polygon. 
Considering the first two PCs (PC1 and PC2), the G6 genotype exhibited the best response 
to the prevailing environmental conditions during crop growth. The G4, G24, G46, and G49 
genotypes might be considered the most stable and productive. In contrast, the G35, G19, 
G29, and G50 genotypes were the least productive because they were located far from the test 
environments, reflecting the fact they produced little in each environment. The G35 genotype 
might be considered the least stable of all the genotypes.

The mega environments may be determined by drawing lines perpendicular to the 
edges of the polygon. Two mega-environments were observed in the GGE biplot. The first 
one, which was termed mega-environment I, was formed by environments A1, A2, A3, A4, 
A7, A8, and A9 and included the most productive and stable genotypes. The second mega-
environment contained only the environment A6.

The which-won-where pattern indicated that G6 was the best-performing genotype 
in the first mega-environment, and G2 exhibited the best performance in the second mega-
environment (Figure 1). Although these hybrids were classified as winning genotypes based 
on an analysis of Figure 1, these genotypes were slightly distant from the origin, compared 
to the second principal component (PC2), thereby, suggesting that they were not very stable 
when environment 6 was included. It must also be emphasized that such an arrangement of 
environments and genotypes is based on a single sample; i.e., the biplot has a descriptive 
nature and overlooks the uncertainty regarding the plotted scores, as has been argued by 
several researchers (Yang et al., 2009; Hu and Yang, 2013a).

Figure 1. Biplot analysis of the GGE model, considering 55 genotypes tested in nine environments, using the 
frequentist approach.
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The results of the Bayesian proposal for the GGE biplot model for the same dataset 
used in the fixed effect analysis are presented below.

Bayesian GGE approach (BGGE)

MCMC chains with 90,000 iterations were simulated for the GGE model parameters in 
the Bayesian analysis. The first 10,000 observations were discarded to avoid selecting samples 
of chains dependent on the initial state and that had not yet reached convergence. Moreover, 
the samples were collected performing jumps every 12 observations. The last procedure 
aimed at selecting uncorrelated observations. At the end of this process, samples with 6,666 
observations were obtained for each parameter. The convergence of Markov chains generated 
using the Gibbs sampler was monitored using the criteria by Raftery and Lewis (1992) and 
Gelman and Rubin (1992), as specified in the Methods section. Those tests indicated good 
convergence for all the model parameters.

Figure 2 shows the lines of chains generated for the first three singular values and for 
the residual variance. As shown in the figure, the values of each chain tend to cluster around 
a specific value, thereby, corroborating the results of the convergence tests performed. This 
trend was observed for all the model parameters.

Figure 2. MCMC plots of the first three singular values and residual variance 2( )es .
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Figure 3 shows plots of the conditional posterior densities of singular values. The 
distributions move increasingly left such that the mode is increasingly close to zero, a result 
that agrees with the theory of principal component analysis 1( )k kl l +≥ .

Figure 3. Posterior marginal densities of the singular values.

Moreover, the first three singular values apparently also followed a normal distribution 
and the distributions became increasingly asymmetrical as of the fourth singular value.

Table 1 outlines the posterior means of the singular values for the BGGE model, 
together with the respective HPD regions. Furthermore, Table 1 also shows ordinary least 
squares (OLS) estimates regarding the application of the GGE model for fixed effects (GGEF).

Table 1. Posterior mean (PM), standard deviation (SD), credible region (95% C.I., LL: Lower limit, UL: upper 
limit), and ordinary least squares (OLS) estimate for singular values (l).

Parameter MP SD LI LS OLS 
1 14.4286 0.6529 13.1511 15.6880 15.2471 
2 6.1552 0.7578 4.7017 7.6773 7.9687 
3 5.3594 0.6802 4.0145 6.6679 7.7909 
4 4.1985 0.8945 2.4342 5.7933 6.8740 
5 2.1103 1.1231 0.0031 3.8463 5.6920 
6 0.9562 0.7906 <0.0001 2.5396 5.4507 
7 0.4192 0.4431 <0.0001 1.3332 5.1155 
8 0.1888 0.2377 <0.0001 0.6894 3.1990 
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The values predicted by the posterior distributions were smaller than the OLS estimates. 
It should also be noted that the first two axes accounted for 67% of the variation, whereas the 
first two PCs explained 57.98% of the variation in the fixed effects model. The correlation 
between the first main axis and the genotypic effects was 97.80%. That result enables one to 
conclude that the genotypic effect was markedly absorbed by the first main axis in the BGGE 
model. This means that the information regarding genotypic adaptability is embedded in the 
first singular value, which enables a better interpretation of the biplot representation. A value 
of 1.201, with a posterior credible interval of (1.099; 1.307) at the 95% probability level, was 
obtained for the posterior mean of residual variance 2( )es .

Point estimates and credible regions of the genotypic and environmental singular 
vector coordinates regarding the first two axes are presented in S1 Table. This Table also 
indicates that the values of posterior estimates were very close to the least squares estimates of 
the genotypic and environmental vector coordinates for the first axis. A greater difference was 
observed between the posterior means and OLS estimates for the second axis.

The posterior densities of the first genotypic and environmental scores for the first 
main axes are shown in Figure 4. The respective densities have apparent symmetry and bell 
shapes, which suggest that they obey a normal distribution. This fact was observed for all the 
genotypic and environmental scores for the first two PCs, which leads to the conjecture that 
the bivariate distributions of scores on the biplot regarding the first two individual axes may 
be adequately approximated by the normal distribution for this dataset.

Figure 4. Posterior marginal densities of the first genotypic and environmental scores for the first two main axes.

http://www.geneticsmr.com/year2016/vol15-2/pdf/8612-su1.pdf
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Figure 5 shows the biplot representation, which was obtained by exclusively considering 
the first two axes of the GGE model (GGE2). This graphical representation consisted of the 
posterior means of genotypic and environmental scores for the first two PCs. This “posterior 
biplot” clearly maintained the same pattern as the traditional biplot, as shown in Figure 1, which 
indicated that the Bayesian approach captured the original pattern of the dataset.

Figure 5. Biplot constructed using the posterior means for the first two main axes.

The bivariate empirical 95% credible regions obtained for each genotypic score are 
shown in Figure 6. These intervals were constructed using the method reported by Antonio 
de Oliveira et al. (2015), although the interpretation was different because we considered 
the scores related to genotypes and interaction (GGE pattern), i.e., the genotype effect was 
confounded with the interaction effect. Only genotypes at the polygon vertices, with their 
respective credible regions, and the ones whose regions for the scores did not include the 
origin (0,0), were plotted to achieve greater simplicity and ease of visualization. The graphical 
visualization shows that the genotypes at the vertices were the same as those observed in the 
GGE biplot for fixed effects.

The GGE biplot, or GGE2 biplot, with the posterior means of genotypic and 
environmental scores and 95% credible regions, is shown in Figure 7. Following the standard 
interpretation of this graphical tool, eight perpendicular line segments were drawn next to 
the polygon, starting at the origin. Different subsets of environments and genotypes may be 
observed in these sectors. The genotype vertices of the polygon are considered to be those 
with the best performance compared with the environments in each which-won-where sector. 
However, interpretations should be made considering the 95% credible regions of the scores. 
It should also be noted that all the environmental sectors were located to the right of the 
vertical axis, in agreement with the results reported by Yan et al. (2000).
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Figure 6. 95% credible regions for the genotypes of the polygon vertices and genotypes whose credible regions do 
not include the origin.

Figure 7. 95% credible regions for the genotypes of the polygon vertices and the genotypes and environments 
whose credible regions do not include the origin.
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This plot showed higher overlap of the credible regions among the environments A1, 
A2, A3, A4, and A7, which indicates that they might have had similar effects regarding the 
interaction and could, therefore, be considered a homogeneous cluster, although increased 
variability was observed in the values of environment A7. Environments A9 and A5 had 
considerable overlap, suggesting effects similar to one another, although some overlap of 
credible regions of the group, as emphasized above, was observed. Environment A6 had 
different levels of overlap with A9 and A5. However, it was apparently most different from 
the other environments and was also the environment that contributed most to the interaction.

As emphasized above, the configuration of the Bayesian GGE biplot with the posterior 
means maintained the same pattern as the frequentist approach. However, no uncertainty was 
considered in the traditional method (Figure 1). As performed for the environments, genotypes 
whose bivariate credible regions for the scores intersect each other may be considered similar 
in terms of adaptability and stability. Three clusters may be defined using this criterion: i) 
those on the left of the vertical axis that, because they are distant from the environmental 
scores, exhibit lower performance in terms of all scores, i.e., they can be discarded by the 
genetic breeder upon simple graphical analysis and with a known type I error rate; ii) those 
on the right of the same axis, whose credible regions of scores overlap at different levels; 
iii) genotypes whose credible regions include the origin at 95% probability, which cannot be 
considered unstable and do not significantly deviate from the overall mean. As shown in the 
figure, the G50 and G45 genotypes belonged to group iii, although they were located at the 
polygon vertices. We could extend this criterion to others scenarios, including the following: 
(i) genotypes whose credible ellipses covered intervals (0 < PC1, 0 < PC2) and (0 < PC1, 0 
< PC2) could be classified as poorly adapted and of low homeostasis; (ii) (0 < PC1, 0 < PC2) 
poorly adapted genotypes, albeit not unstable at 5%; (iii) (0 < PC1, 0 < PC2) genotypes with 
no difference from the overall mean and not unstable; (iv) (0 = PC1, PC2 > 0 V PC2 < 0) 
genotypes with no difference from the overall mean and unstable; (v) (PC1 > 0, PC2 > 0 V PC2 
< 0) genotypes with high general adaptability, albeit with little overall stability (or those that 
were stable or recommended for a particular mega-environment); and (vi) (PC1 > 0, PC2 = 0) 
genotypes with high yield and wide adaptation.

Figure 8 shows the direction of genotypes whose credible interval did not include 
the origin in PC1. Thus, as shown in the figure, we could separate clusters of genotypes that 
differed from each other in terms of adaptability. Conversely, we observed that no genotypes 
differed from each other in terms of stability. Regarding the formation of mega-environments, 
we observed that the two mega-environments formed by the biplot analysis of the data were 
not consistent, given the high overlap of the intervals of the environments between the two 
clusters. Thus, there was no evidence of more than one mega-environment.

DISCUSSION

The present study aimed at applying a Bayesian approach for the GGE (or SERG) 
model, which is obtained from the general linear-bilinear model (GLBM) when the environ-
ment effects are removed (Yang et al., 2009). Although some studies using Bayesian inference 
associated with multiplicative models have been reported, they have been restricted to the ap-
plication of the AMMI model only, and no study that associates Bayesian inference with other 
linear-bilinear models, especially with the GGE (or SERG) model, has been reported to date.
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We assigned non-informative prior distributions, similar to those used by Crossa et 
al. (2011), to all parameters of the GGE model. The efficacy of the approach reported in this 
study was confirmed based on the results obtained because the pattern of the biplot graphical 
representation of the traditional analysis was conserved by the biplot consisting of posterior 
means (Figure 5). Furthermore, as indicated in S1 Table, the values obtained for posterior 
means of the first axis coordinates were very close to the least squares estimates of the fixed 
effects model, which also indicated that our approach with non-informative prior distributions 
was similar to the traditional GGE approach. Greater differences between the Bayesian and 
OLS estimates were observed for the second and remaining subsequent axes. This fact may 
have resulted from the shrinkage effect of the estimates of singular values, which is clear 
from the second axis because the credible region for 2l  did not include the value of the OLS 
estimate (S1 Table). As noted by Liu (2001), the estimates of the singular vector coordinates 
are apparently affected by the magnitude of the Kl  values.

Even when assigning non-informative prior distributions to all parameters, the 
maximum a posteriori probability (MAP) estimates of singular values were shrunken 
when compared with the OLS estimates of the fixed effects GGE. That shrinkage became 
increasingly more pronounced for higher-order singular values. This fact has been observed 
in studies with the Bayesian AMMI model (Crossa et al., 2011; Perez-Elizalde et al., 2011; 
Antonio de Oliveira et al., 2015; da Silva et al., 2015). Indeed, stronger shrinkage effect should 
be expected when assigning specific prior distributions to variance components of singular 
values, thereby shrinking the estimate of singular values related to the axes of higher order 
until zero and leading to more pronounced predictions for singular values associated with the 

Figure 8. Bivariate 95% credible regions that do not include the origin for genotypic and environmental scores.

http://www.geneticsmr.com/year2016/vol15-2/pdf/8612-su1.pdf
http://www.geneticsmr.com/year2016/vol15-2/pdf/8612-su1.pdf
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first axes. This result was clearly observed in the derivations of Bayesian AMMI shrinkage 
described by da Silva et al. (2015).

Other aspects may also be highlighted here and agree with the approaches using 
“Bayesian AMMI” that have been previously presented in the literature. First, the standard 
deviations for the first axis increased up to 5l , which was obviously reflected in the HPD 
credible regions. This result agrees with the theory of principal component analysis, in which 
the first axes are estimated most accurately (Crossa et al., 2011; Antonio de Oliveira et al., 
2015). However, the standard deviation values decreased starting at 6l . This decrease surely 
resulted from the shrinkage effect, which became more pronounced as of the sixth singular 
value, i.e., there was little variation around a very low value, thus, indicating that the latter 
axes did not have a significant contribution to explaining the GGE pattern. The same trend 
was observed for the singular vector coordinates. Vectors related to the first singular values 
had lower variance - as indicated by the standard deviation values, which were greater than 
vector coordinates associated with higher-order axes. That fact, as emphasized by Antonio de 
Oliveira et al. (2015), may be explained by the larger magnitude of the first singular values 
because the vector coordinates were generated from Von Mises-Fisher distributions, for which 
a higher value of the concentration parameter indicates that points are more clustered around 
the directional mean.

Elliptical 95% credible regions were also constructed for the GGE2 biplot. These 
regions are based on the Euclidean distances of the points from the center of the distributions 
of scores, similar to the regions reported by Antonio de Oliveira et al. (2015). Crossa et al. 
(2011) and Perez-Elizalde et al. (2011) also reported HPD credible regions for genotypic and 
environmental scores, which were used to separate homogeneous groups of genotypes and 
environments based on the interaction effect. Methods for obtaining confidence regions, free 
of theoretical assumptions regarding the distribution of scores, may also be found in the report 
of Hu and Yang (2013b).

It is noteworthy that Bayesian inference offers a flexible and parametric method for 
inference of the biplot, based on the joint posterior distribution, unlike parametric frequentist 
methods (Denis and Gower, 1996), which are difficult to extend to more complex models 
and require restrictive assumptions regarding the distribution of individual scores (Yang et 
al., 2009; Hu and Yang, 2013a). Component tests based on the F distribution may offer a 
reasonable fit to the first singular values. However, the normality assumption is difficult to 
satisfy for the highest singular values, as shown in Figure 3.

Furthermore, there are known limitations of fixed effects models, including their 
difficulty in treating unbalanced data and variance heterogeneity - although some methods have 
been suggested to circumvent such difficulties using additional procedures to impute missing 
values, namely, the expectation-maximization (EM)-AMMI by Gauch and Zobel (1990) and 
methods based on cross-validation (Dias and Krzanowski, 2003). Rodrigues et al. (2014), for 
example, proposed a weighted algorithm of decomposition of singular values to treat variance 
heterogeneity, the weighted AMMI (W-AMMI), which may be considered an alternative to 
mixed model analyses and may be applied to a wide range of situations. A critique of biplot 
methods is their descriptive and non-inferential nature, i.e., uncertainty is not considered in 
the plots that described the GE or G+GE pattern. Accordingly, Yang et al. (2009) voiced a 
strong critique regarding conclusions about the biplot and suggested using non-parametric 
methods, including bootstrapping, as inference tools and incorporating confidence regions 
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into biplots. The approach suggested by Yang et al. (2009) was subsequently improved using a 
bidirectional bootstrapping procedure with the Procrustes rotation developed by Hu and Yang 
(2013a), which was motivated by the fact that the singular value decomposition of a matrix 
is not unique. However, this method is susceptible to criticism regarding the computationally 
intensive resampling of the rows and columns of GGE matrices. The main problem is that 
score positions in a biplot are mutually defined, and the signs and values become meaningless 
when genotypic scores are randomly separated from environmental scores by the resampling 
process, thus destroying the original data pattern (Yan et al., 2010). Our results do not invalidate 
the use of the GGE biplot as an analytical tool. On the contrary, they demonstrate that the GGE 
Biplot may be a powerful tool for genetic breeders, provided that good experimental accuracy 
is achieved, which will consequently affect the range of the credible interval and the decision-
making process.

Another discussion that naturally emerges regards the interpretation of confidence 
regions in biplots. When using the interpretations present in the literature (Crossa et al., 2011; 
Perez-Elizalde et al., 2011; Hu and Yang, 2013a; de Oliveira et al., 2015), one can observe 
that the “which-won-where” pattern, which is commonly used in traditional analysis, was 
not observed at 95% credibility. Another fact to be highlighted is the overlapping credible 
regions, which preclude differentiating the effects of genotypes that belong to the two mega-
environments found in the traditional method. Furthermore, different levels of overlap are 
observed for the credible regions of environmental scores, thus complicating the separation of 
groups. However, experience and common sense of researchers may help them differentiate 
between homogeneous groups of genotypes and mega-environments. Denis and Gower (1996), 
for example, differentiated homogeneous groups of genotypes and environments, even when 
a considerable degree of overlap existed among the confidence regions.

Nonetheless, research studies aimed at more consistent interpretations of inference 
procedures for biplot analysis are necessary. The polygon shown in Figure 7, along with the 
perpendicular lines and credible regions, for example, refers to posterior means. However, 
formation of a different polygon would occur for each interaction. Thus, using a static polygon 
to interpret patterns through credible regions does not seem reasonable. Hence, the procedure 
used herein only consisted in observing the overlap between regions to draw conclusions 
from the MET dataset of the original GGE. The same observation may be extended to the 
perpendicular lines that define mega-environments.

The key to implementing the Bayesian GGE biplot is its essential difference from the 
AMMI model; as stated in the methods section, this approach is based on the constraint that 
singular vectors are orthogonal to the vector 11nx  (for n = g or n = e). The effects add up to 
zero in the rows and columns of the GE interaction matrix, to be decomposed in the AMMI 
method. Thus, that the rank is given by p = min (r -1, c - 1). For the genotype and GE effects 
matrix (GGE), the effects in rows still add up to zero, although the effects in the columns 
do not. As a result, the new rank of this matrix is p = min (r - 1, c), i.e., the constraint that 
environmental singular vectors must be orthogonal to the vector 11ex  is not present in the 
GGE model. Thus, for a successful Bayesian GGE, we cannot simply remove the effects of 
the means and environments from the AMMI model and confound the effects of interaction 
and genotypes to obtain the approach described in the present study. These details should be 
considered in the MCMC sampling process, such that the method may be correctly applied.

The main question is whether the uncertainty present in the biplot requires a GGE 
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analysis as complex as that reported in the present study. The authors’ answer to that question is 
yes, because incorporation of uncertainty is a consequence of the Bayesian approach and not an 
end. Put otherwise, the Bayesian GGE model enables one to treat unbalanced data and variance 
heterogeneity, among other advantages, which, thus far, has only been effectively exploited in 
mixed models with factor analytic structures. Kelly et al. (2007) and Burgueño et al. (2008) 
demonstrated that despite the superiority of factor analytic models and their ability to incorporate 
kinship and variance heterogeneity, it is not easy to use such models because of the need to 
impose constraints to ensure that the solutions are within the parameter space, as determined by 
Thompson et al. (2003). de los Campos and Gianola (2007) introduced the Bayesian approach 
of the AF model, in which the constraints necessary in its frequentist version are unnecessary 
because the use of prior data eliminates those constraints. However, this model is not easily 
interpreted or applied because Bayesian factor analysis is quite complex.

Accordingly, modeling variance heterogeneity becomes easily implemented in 
the Bayesian GGE when assuming an inverted Wishart. Because our approach claims the 
same features as AF models, a possible addition to those models regards the number of 
parameters to be estimated, which are always expressed as a function of min(g-1, e). For 
example, if GGE2 is chosen, the researcher will need to resort to six partial derivatives 
of conditional distribution (3) or 3[min(g-1, e)] for any number of terms to obtain all the 
GGE parameters, not (e(e-1)/2), for example, as required in AF models, in addition to 
several constraints that must be imposed to ensure a single solution for the load matrix 
(Smith et al., 2001; Meyer, 2009). Furthermore, all partial derivatives have closed-form 
solutions, and Heywood cases for singular values may be mitigated if the prior distribution 
is non-informative. Thus, the derivation of posterior approach for conditional distributions 
reported in this study may be easily applied and direct obtainment of the MAP rather than 
numerical integration of the conditional distributions may render the approach more efficient 
compared with the algorithms reported in mixed models with factor analytic structure. This 
is a topic of ongoing research. Another advantage of GGE analysis over AF is that the model 
interpretation is direct, with no need for arrangements, unlike the AF interpretation from the 
GGE standpoint, if two factor loadings are considered and the G effects are confounded with 
the GE (Burgueño et al, 2008; Stefanova and Burchiell, 2010).

The dataset used in the present study was the same as used by Antonio de Oliveira et 
al. (2015) and, although some small differences were observed, a similar pattern regarding the 
best genotypes in terms of yield and those with the poorest yields was observed. As already 
emphasized, the Bayesian method offers several advantages relative to the frequentist methods, 
either because of the flexibility in treating heteroscedastic datasets as well as unbalanced data or 
because it allows incorporating additional data into the analysis, thus, improving the inference 
process. Because GGE analysis has been systematically used to draw conclusions and make 
important decisions, there is a need to construct inference procedures based on biplots to 
ensure that the results obtained are critical rather than merely descriptive. Accordingly, the 
method reported, herein, is quite promising. New GGE approaches that consider specific 
priors for the parameters will certainly be a topic of future research.
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